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Preface

These notes originate from the graduate course MAT7092 Stochastic Processes, taught
by Dr. Wangjun Yuan in the Fall semester of 2025 at the Southern University of Science
and Technology (SUSTech). Presented entirely on the blackboard with remarkable clarity
and depth, the course wove together rigorous theory and profound insight.

Coming from an undergraduate background in physics and without prior formal train-
ing in measure theory, I initially found its pace challenging. The elegant abstraction of
martingale, dynamic structure of Markov process, and rich behavior of Brownian motion
often seemed daunting amidst the swift flow of ideas. It was in striving to keep up, to
translate each lecture into something tangible and retainable, that this notebook began,
first as hurried annotations on an iPad, later as a structured and reflective compilation.

As the course unfolded, so did my appreciation. What once felt like a rapid succession
of definitions and theorems gradually revealed itself as a coherent and beautifully con-
structed edifice. It is designed for those who have encountered elementary stochastic
processes and now wish to delve deeper. This text is therefore more than a transcription.
It is a digested and reorganized account, meant to capture both the logical skeleton and
the intuitive spirit of the material.

In these pages, I have sought to preserve the lecture’s rigor while supplementing explana-
tions, examples, and occasional commentary that helped me cross conceptual bridges. If
this notebook offers others a clearer path through the same rewarding terrain, or simply
conveys something of the course’s intellectual elegance, it will have achieved its purpose.

To the fellow student who also once felt lost in the landscape of random evolution: may
you find here not only clarity, but also inspiration. The beauty of stochastic processes
lies not in their complexity alone, but in their power to model, to reveal, and to predict
the uncertain rhythms of the world.
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1 Conditional Expectation

Intuitively speaking, stochastic processes: A mathematical model for occurrence of
a random phenomenon at each moment after intial time. And if X = {Xt : t ≥ 0} is
a stochastic process, then for every fixed t, Xt is a random variables. The goal of this
subject is to study the relationship between Xt and Xs.
Roughly speaking the course content is:

1. Tools: Conditional Expectation, Martingales, Markov Property.

2. Processes: Markov process, Brownian motions, Poisson process, Lévy process,
Brownian sheet.

1.1 Brief Probability Theory

Firstly, let’s state out some important probability theory concepts for further formalisa-
tion. In order to describe probability space, we need sample space and sample points:

Definition 1.1. Sample space denoted as Ω, and sample points: ω ∈ Ω.

Then on this sample space, we will restrict to only study certain subsets:

Definition 1.2. Let F be a collection of subsets of Ω, such that:

(a) Ω ∈ F .

(b) ∀ A ∈ F =⇒ Ac ∈ F .

(c) ∀ Ai ∈ F =⇒ ∪∞i=1Ai ∈ F .

, then F is called σ-algebra on Ω.

For better understanding, we provide some trivial examples:

Example 1.1. The most trivial one would be: F = {∅,Ω}. And we also can add
in one element, then F = {∅,Ω, A,Ac} is also a σ-algebra.

After two major elements, we need to assign value, then comes with measure:

Definition 1.3. If a set function: P : F 7→ [0, 1] satisfies:

(a) P(∅) = 0,P(Ω) = 1.

(b) ∀ disjoint Ai ∈ F , P (
⋃∞
i=1Ai) =

∑∞
i=1 P(Ai).

, then P is probability measure, and we further call (Ω,F ,P) a probability space.

Since measure taking on element in abstract space to [0, 1], and we are more into studying
real value, therefore we need a function to bring us back, there comes random variable:

Definition 1.4. A measurable function X : Ω 7→ R is called a random variables.
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Then the correspongding ”measure” also need to be pushed forward:

Definition 1.5. Let X be a r.v. on (Ω,F ,P), on (R,Borel σ-algebra on R) =
(R,B(R)), we define set function: µX : B(R) 7→ R([0, 1]), such that:

µX(B) = P(X−1(B)) = P(X ∈ B)

, then µX is probability measure on (R,B(R)), called probability distribution of X.

Remark 1.1. Note that: µX((−∞, a]) = P(X ∈ (−∞, a]) = P(X ≤ a).

Once we have the distribution, we could study the relationship of r.v.s:

Definition 1.6. Let X, Y be two r.v.s on (Ω,F ,P). If µX = µY on Rd, then we
say X and Y are identically distributed.

Done with major definitions, we could delve into r.v’s properties, like expectation:

Definition 1.7. Let X be a r.v. on (Ω,F ,P). The expectation of X is:

EX =

∫
Ω

X(ω)P(dω)

, if it is finite, otherwise it is undefined.

This is well defined, since generally, from probability theory class, you should know that,
we could seperate this into four progressive stages:

1. If X(ω) = 1A(ω), A ∈ F , then EX = E1A = P(A).

2. If X(ω) =
∑m

i=1 ai1Ai
, Ai ∈ F , ai ∈ R, then EX =

∑m
i=1 aiP(Ai).

3. If X(ω) ≥ 0, take φn =
∑
ai1Ai

, s.t. 0 ≤ φ ≤ X,φn ↑ X, then, EX = limn→∞ Eφn.

4. For general case, X(ω) = X+(ω)+X−(ω), here X+ = max(X, 0), X− = min(X, 0).

Remark 1.2. 1. Note here: Ef(X) =
∫
Ω
f(X(ω))P(dω) =

∫
R f(x)µX(dx).

2. If X be a r.v. on (Ω,F ,P) satisfies E|X| < +∞ then X is integrable. We write:
X ∈ L1(Ω,F ,P). More generally, if p ∈ R, Xp ∈ L1(Ω,F ,P), thenX ∈ Lp(Ω,F ,P).

In order to further proceed, we need an important concepts, independence:

Definition 1.8. On (Ω,F ,P), Ai ⊆ F is a σ-algebra for 1 ≤ i ≤ n. If ∀ Aik ∈
Aik , ik ∈ {1, · · · , n} it holds that:

P

(
l⋂
k

Aik

)
=

l∏
k

P(Aik)

, then we say A1, · · · ,An are independent.

After the definition of independence in σ-algebra, we move to r.v.s:
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Definition 1.9. Let {Xi : 1 ≤ i ≤ n} be r.v.s If ∀ Borel sets {Bj : 1 ≤ j ≤ n}:

P (X1 ∈ B1, · · · , Xn ∈ Bn) =
n∏
i=1

P(Xi ∈ Bj)

, then {Xi : 1 ≤ i ≤ n} are independent.

Remark 1.3. {Xi : 1 ≤ i ≤ n} are independent ⇔ σ(X1), · · · , σ(Xn) are independent.

Lasly, we extend the standard definition into the quantity we are interested in:

Proposition 1.1. If X1, · · · , Xn are independent r.v.s then:

EX1 · · ·Xn = EX1 · · ·EXn

Proof. The proof is simple and we leave for reader to verify.

1.2 Conditional Expectation

Finally, we are about to study the main basic tool of this subjects:

Definition 1.10. On (Ω,F ,P), X be a r.v., and A ⊆ F be a σ-algebra, then a r.v.
Y is the conditional expectation of X relative to A, if Y satisfies:

(a) Y is measurable with respect to A.

(b) ∀ A ∈ A, the following integration holds:∫
A

Y dP =

∫
A

XdP or EX1A = EY 1A

Further more, using indicate function, we have conditional probability:

Definition 1.11. For B ∈ F , we call P(B | A) = E [1B | A] the conditional proba-
bility of B relative to A.

After defining conditional expectation, reader may wonder the existence and uniqueness:

Remark 1.4. If X ∈ L1(Ω,F ,P), the conditional expectation, E [X | A] exists and is
unique in the sense of a.s.

Proof. Consider the set function ν on A satisfying ν(A) =
∫
A
XdP,∀ A ∈ A. Then

ν is well-defined, finite-valued and countably additive. Thus, ν is a (sign) measurable.
If P(A) = 0 then ν(A) = 0, so ν ≪ P (absolutely continous). By Radon-Nikodym
Theorem. Y = ν/dP exists and is unique except a P-null set.

The Radon-Nikodym Theorem is not the main focus, then we just ignore it, and to better
understand how the conditional expectation means, we consider:

Remark 1.5. By 1.10’(b), we could rewrite into:

∀ A ∈ A,
∫
A

(X − E [X | A])dP = 0 a.s.
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Then we may plug into indicator function, ∀ Ai ∈ A∫
Ω

(X − E [X | A])

(
k∑
i=1

1Ai

)
dP = 0

Then by DCT, ∀ Z ∈ A:

E {[X − E (X | A)]Z} =
∫
Ω

[X − E (X | A)]ZdP = 0

Thus, we have decomposition X = X1 +X2 with:

X1 = E [X | A] ∈ A, X2 = X − E [X | A] ⊥ A

In particular, X1 ⊥ X2.

The above remark is to say our expectation is indeed the best ”guess” we can make under
the information we have, somewhat like a projection since perpendicular property.

0

G

X ∈ G

E (Y | G)

Y

Figure 1: Geometric Interpretation of Conditional Expectation

Then next, for r.v.s X1, · · · , Xn ∈ L1(Ω,F ,P), let σ(X1, · · · , Xn) be the σ-algebra gen-
erated by X1, · · · , Xn, then we write:

E [X | X1, · · · , Xn] := E [X | σ(X1, · · · , Xn)]

Lastly, to conclude, we provide some properties of conditional expectations:

Proposition 1.2. Let a r.v. X ∈ L1(Ω,F ,P), and A ∈ F be a σ-algebra. If
X ∈ A, then E[X | A] = X.

Proof. Clearly, by definition, for any A ∈ A:∫
A

XdP =

∫
A

XdP =⇒ E [X | A] = X

And since X ∈ A, then we completed the proof.

6



33
.

Proposition 1.3. Let a r.v. X ∈ L1(Ω,F ,P), and A ∈ F be a σ-algebra. If X is
independent of A, then E[X | A] = EX.

Proof. Just check definition, write: Y = E [X | A], then ∀ A ∈ A:

EY 1A = EX1A = EXE1A = E [(EX)1A]

As σ(EX) = {∅,Ω} ∈ A, we have Y = EX by uniqueness.

Also more concrete properties with inequalities:

Proposition 1.4. Let a r.v. X ∈ L1(Ω,F ,P), and A ∈ F be a σ-algebra, then:

(a) E[X | F ] = X.

(b) E[X | {∅,Ω}] = EX

(c) If X ≥ 0, a.s., then E[X | A] ≥ 0, a.s.

Proof. (a) Clearly, X ∈ F , then by 1.2, E [X | F ] = X.

(b) If X ∈ {∅,Ω}, then X is constant, so it holds. Otherwise ,use independence.

(c) Let Y = E [X | A] ∈ A, then set: G = {Y < 0}, and by definition:

EY 1G = EX1G ≥ 0

If λ(G) ̸= 0, then this is a contradiction.
Then we completed the proof.

Corollary 1.5. If X, Y be two r.v.s, and X ≥ Y, a.s., then E[X | A] ≥ E[Y | A]

Proof. This is simply an application of 1.4’s(c).

Followings are more advanced tools we are going to use:

Proposition 1.6. For r.v.s X, Y ∈ L1(Ω,F ,P),A ⊆ F is a σ-algebra, then:

(a) Linearity: αE [X | A] + βE [Y | A] = E [αX + βY | A].

(b) Jensen’s Inequality: for convex integrable function φ:

φ (E [X | A]) ≤ E [φ (X) | A] a.s.

(c) Hölder’s Inequality: for 1 < p, q < +∞ with 1
p
+ 1

q
= 1:

|E [XY | A]| ≤ E [|XY | | A] ≤ (E [|X|p | A])1/p + (E [|X|q | A])1/q a.s.

Proof. The proof is left as homework.
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Proposition 1.7. For r.v.s X, Y on (Ω,F ,P),A ⊆ F is a σ-algebra, if X,XY ∈
L1(Ω,F ,P) and Y ∈ A, then:

E [XY | A] = Y E [X | A] , a.s.

Proof. By linearity and approximation, it suffices to only show that it works for indicator
function, write: Z = E [X | A], then ∀ B ∈ A,EZ1B = EX1B, now for A,B ∈ A:

E(Z1A · 1B) = E(X1A · 1B) =⇒ 1AE [X | A] = Z1A = E [X1A | A]

Therefore, as Z1A ∈ A, we showed that work for Y = 1A

Proposition 1.8. For a r.v. X ∈ L1(Ω,F ,P),A1 ⊆ A2 ⊆ F are σ-algebras, then:

E [E (X | A1) | A2] = E [X | A1] = E [E (X | A2) | A1]

Proof. (1) For first equality, since E [X | A1] ∈ A1 ⊆ A2, then by 1.2, it holds:

E [E (X | A1) | A2] = E [X | A1]

(2) For second equality, write: Y = E [X | A2] , Z = E [Y | A1], then ∀A ∈ A1 ⊆ A2:

EZ1A = E [E (X | A2)1A] = EX1A = EY 1A

This gives us: E [X | A1] = Z = E [E (X | A2) | A1].
Therefore, we completed the proof.

1.3 Homeworks

The followings are exercises for this section:

Problem 1.1. Let X, Y ∈ L1(Ω,F ,P) be random variables and A ⊆ F be a
σ-algebra.

(1) Prove that if X ≥ Y a.s., then E [X | A] ≥ E [Y | A].

(2) For any α, β ∈ R, prove that αE [X | A] + βE [Y | A] = E [αX + βY | A].

(3) For convex integrable function φ, prove that

φ (E [X|A]) ≤ E [φ(X) | A] .

(4) For 1 < p, q < +∞ with 1
p
+ 1

q
= 1, prove that

|E [XY | A] | ≤ (E [|X|p | A])1/p (E [|Y |q | A])1/q .
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2 Discrete-time Stochastic Process

After establishing the most thrilling tools, we are ready to start the journey of stochastic
process, and firstly, we focus on general properties of discrete time stochastic process,
where we first define some general concepts, then filtration, stopping time, a certain type
of r.v., then basic disrete martingale theory.

2.1 Formalise Process

Firstly, we need to make sure our focus, what kind of stochastic process, and how:

Definition 2.1. On (Ω,F ,P), a sequence {Xn : n ∈ N}, where each Xn is a r.v.,
is called a discrete time stochastic process. Moreover:

(a) If the r.v.s, X1, X2, · · · are independent, then the process, {Xn : n ∈ N} is an
independent process.

(b) If the r.v.s, X1, X2, · · · are i.i.d., then the process {Xn : n ∈ N} is a station-
ary independent process.

Above sounds abstract, but we could see some familiarities from below:

Definition 2.2. Let {Xn : n ∈ N} be a stationary independent process, we write
S0 = 0 and Sn =

∑n
i=1Xi, then the process {Sn : n ∈ N} is a random walk.

From this definition, we could provide following example:

Example 2.1. Let X1, X2, · · · be i.i.d. Bernoulli r.v.s, i.e. P(X1 = 1) = p and
P(X1 = −1) = 1− p. Then Sn =

∑n
i=1Xi can be viewed as a n-step walk from 0.

Correspondingly, we state a property of random walk:

Definition 2.3. Let S = {Sn : n ∈ N} be a random walk and x ∈ R if:

∀ ε > 0,P

(
lim sup
n→∞

{|Sn − x| < ε}
)

= 1

, then x is called a recurrent value of S. If ∀ ε > 0,∃ n ∈ N, s.t:

P(|Sn − x| < ε) > 0

, then x is a possible value of S.

Remark 2.1. Recall: lim supn→∞{|Sn − x| < ε} = ∩∞N=1 ∪∞n=N {|Sn − x| < ε}.
We point out here but won’t delve into, the tools to study random walk is Borel-Cantelli
Lemma, Law of Large Numbers, Characteristic function, etc.

2.2 Filtration

A process evolves as time, so as the information, then how to depict this phenomenon:
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Definition 2.4. On (Ω,F ,P), a sequence {Fn : n ∈ N} is called a filtration if
Fn ⊆ F is a σ-algebra satisfying, Fn ⊆ Fn+1,∀ n. If X = {Xn : n ∈ N} is a process
satisfying Xn ∈ Fn ∀ n, then we say X is adapted to {Fn : n ∈ N}.

Remark 2.2. 1. ∀ n ∈ N, X1, · · · , Xn ∈ Fn, that is Fn contains information ofX1, · · · , Xn.

2. For a filtration {Fn : n ∈ N}, we write F∞ for the σ-algebra generated by ∪∞n=1Fn.

3. For a process X = {Xn : n ∈ N}, we set FXn = σ(X1, · · · , Xn), the {FXn : n ∈ N} is
a filtration and X is adapted to {FXn : n ∈ N}. Then we say {FXn : n ∈ N} is the
filtration generated by X, and indeed the smallest filtration s.t. X is adapted to.

After introducing filtration, we could define a type of r.v.s called optional r.v.:

Definition 2.5. For a filtration {Fn : n ∈ N}, if a r.v. α satisfies:

(a) α ∈ N ∪ {∞}.

(b) ∀ n ∈ N ∪ {∞}, {ω : α(ω) = n} ∈ Fn.

, then we say α is optional relative to {Fn : n ∈ N}.

Strictly equal is too demanding, and using the knowledge in Remark 2.2:

Remark 2.3. 1. {α = n} can be replaced by {α ≤ n}.

2. For a stochastic process X = {Xn : n ∈ N}, if α is optional relative to {FXn : n ∈
N ∪ {∞}}, then we say α is optional relative to X.

To avoid abstractness, we provide an example:

Example 2.2. For X = {Xn : n ∈ N}, c ∈ R, we set α = min{n : Xn < c}, then
α is optional relative to X.

Proof. Simply, check:

{α = n} = {X1 ≥ c} ∩ · · · ∩ {Xn−1 ≥ c} ∩ {Xn < c} ∈ FXn

Then we smoothly completed the proof.

A natural question is that optional r.v. tends to represent time related event, then does
it has σ-algebra. (Actually, stopping time is a new way of seperation of time)

Definition 2.6. For a filtration {Fn : n ∈ N} and an optional r.v., α, define:

Fα = {A ∈ F∞ : A ∩ {α ≤ n} ∈ Fn,∀ n ∈ N ∪ {∞}}

, is called pre-α σ-algebra.

Remark 2.4. 1. Fα is indeed a σ-algebra. (the verification leave as homework)

2. Useful tool when we dealing with optional r.v.:

∀ A ∈ F∞, A =
⋃

n∈N∪{∞}

(A ∩ {α = n})

10



33
.

Instead of stating out more definitions, we first see some properties of optional r.v.s:

Proposition 2.1. Let α, β be optional r.v.s relative to {Fn : n ∈ N ∪ {∞}}, then:

(a) If α ≤ β a.s, then Fα ⊆ Fβ.

(b) Fα∧β = Fα ∩ Fβ.

Proof. (a) Since α ≤ β, then {β ≤ n} ⊆ {α ≤ n},∀ n ∈ N, then, ∀ A ∈ Fα:

A ∩ {β ≤ n} = (A ∩ {α ≤ n}) ∩ {β ≤ n} ∈ Fn

, for n ∈ N ∪ {∞}, then A ∈ Fβ.

(b) As α ∧ β ≤ α, α ∧ β ≤ β, then Fα∧β ⊆ Fα ∩ Fβ. Reversely, if A ∈ Fα ∩ Fβ:

A∩{α∧β ≤ n} = A
⋂

({α ≤ n} ∪ {β ≤ n}) = (A ∩ {α ≤ n})
⋃

(A ∩ {β ≤ n}) ∈ Fn

, therefore Fα ∩ Fβ ⊆ Fα∧β.
Hence, we completed the proof.

2.3 Basic Martingale Theory

For discrete time optional r.v.s, we don’t want to waste too much time in providing more
propositions and properties, let’s directly jump into the core of this course:

Definition 2.7. On (Ω,F ,P), X = {Xn : n ∈ N} is an adapted process relative to
{Fn : n ∈ N}, and ∀ n, Xn ∈ L1(Ω,F ,P):

(a) If Xn ≥ E [Xn+1 | Fn], then Xn is called {Fn : n ∈ N}-supermartingale.

(b) If Xn ≤ E [Xn+1 | Fn], then Xn is called {Fn : n ∈ N}-submartingale.

(c) If Xn = E [Xn+1 | Fn], then Xn is called {Fn : n ∈ N}-martingale.

Remark 2.5. 1. X is a {Fn : n ∈ N}-supermartingale, then −X = {−Xn : n ∈ N} is
{Fn : n ∈ N}-submartingale.

2. X is {Fn : n ∈ N}-martingale iff X is {Fn : n ∈ N}-super- and sub-martingale.

It is easy to see that in general submartingale are ”increasing” in some sense, formally:

Example 2.3. Choose Xn = an,∀ n ∈ N, and adapted to any filtration,{Fn : n ∈
N}. If {an : n ∈ N} is a decreasing/increasing /constant sequence, then Xn is
{Fn : n ∈ N}-super-/sub-martingale.

Following, we provide a more concrete example:

Example 2.4. Say X = {Xn : n ∈ N} be an independent process relative to
FXn = σ(X1, · · · , Xn), also ∀ n, Xn ∈ L1(Ω,F ,P), denote: Sn =

∑n
k=1Xk, then:

E
[
Sn+1 | FXn

]
= E

[
Sn +Xn+1 | FXn

]
= Sn + E

[
Xn+1 | FXn

]
= Sn + EXn+1
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Therefore, we consider following situations:

1. If ∀ n, EXn ≥ 0, then Sn is submartingale.

2. If ∀ n, EXn ≤ 0, then Sn is supermartingale.

3. If ∀ n, EXn = 0, then Sn is martingale.

Lastly, we provide a interesting lemma of Doob martingale:

Example 2.5. Let Y ∈ L1(Ω,F ,P), and a filtration {Fn : n ∈ N}, then for a
process X = {Xn : n ∈ N} is a {Fn : n ∈ N}-martingale by defining:

Xn = E [Yn | Fn] , ∀ n ∈ N ∪ {∞}

Remark 2.6. Normally: martingale +
increasing

decreasing
=

submartingale

supermartingale
.

Then a natural motivation is to ask: what the martingale looks like in general?

Definition 2.8. For a process X = {Xn : n ∈ N}, ∀ n, Xn ∈ L1(Ω,F ,P) with:

X1 = 0 and Xn ≤ Xn+1,∀ n ∈ N

, then we call X is an increasing process.

Besides that in order to introduce decomposition, we need one more friend:

Definition 2.9. A process X = {Xn : n ∈ N} and a filtration, {Fn : n ∈ N},if:

∀ n ∈ N, Xn+1 ∈ Fn

, then we call X is a predictable prcess.

Based on the newly introduced concepts, we land on astounding result:

Theorem 2.2. (Doob’s Decomposition Theorem)
Any submartingale, X = {Xn : n ∈ N} relative to {Fn : n ∈ N}, there exists a
martingale, Y = {Yn : n ∈ N} relative to {Fn : n ∈ N}, and an increasing process,
Z = {Zn : n ∈ N}, such that: Xn = Yn + Zn, ∀ n.

Proof. To prove this, we need to construct the corresponding process, firstly n ≥ 2:

Zn =
n∑
k=2

[E (Xk | Fk−1)−Xk−1]

with convention Z1 = 0, and X is submartingale, then Z is increasing process since:

E (Xk | Fk−1)−Xk−1 ≥ 0 =⇒ Zn ↑
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Then it is easily check following is a martingale by Y1 = X1, and for n ≥ 2:

Yn = Xn − Zn =
n∑
k=2

[Xk − E (Xk | Fk−1)] +X1

Therefore, we completed the proof by finding two processes out.

Remark 2.7. Notice that Zn ∈ Fn−1, that is to say Z is a predictable process. If in
addition, we require Z to be predictable, then the Doob’s decomposition is unique.

From above really intuitive (?) theorem, we have following useful corollary:

Corollary 2.3. Let X = {Xn : n ∈ N} is a submartingale relative to {Fn : n ∈ N},
and for the Doob’s decomposition, i.e. Xn = Yn + Zn:

(a) If X is L1 bounded, then Y and Z are also L1 bounded.

(b) If X is uniformly integrable, then Y amd Z are also uniformly integrable.

Proof. (a) Firstly, since Y is martingale, then E|Y1| < +∞, therefore:

0 ≤ E|Zn| ≤ E|Xn|+ E|Yn| ≤ sup
n

E|Xn|+ E|Y1| < +∞

, next, similarly, using above one can also show:

E|Yn| ≤ E|Xn|+ E|Zn| ≤ 2 sup
n

E|Xn|+ E|Y1| < +∞

(b) Firstly, let’s see what uniformly integrability of X gives, ∀ n ∈ N:

∃ A, s.t. E|Xn|1{|Xn|>A} < 1 =⇒ E|Xn| = E|Xn|1{|Xn|>A}+E|Xn|1{|Xn|≤A} < 1+A

Above gives X is L1 bounded, so as Z, since its non-negative and increasing:

Zn ≥ 0, Zn ↑ =⇒ Z ′ = lim
n→∞

Zn ∃
Fatou
=⇒ EZ ′ ≤ lim inf

n→∞
EZn ≤ sup

n
EZn < +∞

Hence ∀ n ∈ N,∀ A ∈ R, by increasing Zn ≤ Z ′, then:

0 ≤ EZn1{Zn>A} ≤ EZ ′1{Z′>A}
A→+∞−−−−→ 0

Therefore, Z is also u.i., for L1 bounded Y , decompose into, ∀ E ∈ F :

E|Yn|1E ≤ E|Xn|1E + EZn1E

Then we can control Y by X and Z, so we completed the proof.

Remark 2.8. Quick recall for the convergence concepts:

1. L1 bounded: ∃ C ∈ R,E|Xn| < C < +∞⇔ supn∈N E|Xn| < +∞.

2. Uniformly integrable: limM→∞ E|Xn|1{|Xn|>M} = 0, another equivlance condition:
X is L1 bounded plus ∀ ε > 0,∃ δ = δ(ε) > 0, s.t. :

∀ E ∈ F ,P(E) < δ =⇒ ∀ n ∈ N,E|Xn|1E < ε

Then we restrict on submartingale, and introduce some properties:
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Proposition 2.4. If X is a {Fn}-submartingale, then

(a) EXn ≥ EX1.

(b) ∀ An ∈ Fn,EXn+11An ≥ EXn1An.

Proof. Simply iteratively use tower rule:

(a) EXn = E [E (Xn | Fn−1)] ≥ EXn−1 = E [E (Xn−1 | Fn−2)] ≥ EXn−2 ≥ · · · ≥ EX1.

(b) EXn+11An = E [E (Xn+11An | Fn)] = E [E (Xn+1 | Fn)1An ] ≥ EXn1An .

Then we completed the proof.

Proposition 2.5. If X, Y are {Fn}-submartingale, then ∀ a, b ∈ R+:

aX + bY = {aXn + bYn : n ∈ N}

is a {Fn}-submartingale.

Proof. It is same for supermartingale, and can be extended to martingale even to whole
real line, and the proof is omitted since it just checks the definitions.

Proposition 2.6. Let X = {Xn : n ∈ N} be {Fn}-submartingale, and φ be an
increasing convex function on R. If φ(Xn) ∈ L1(Ω,F ,P), then {φ(Xn) : n ∈ N} is
a {Fn}-submartingale.

Proof. It simply follows below:

E (φ(Xn+1) | Fn) ≥ φ (E [Xn+1 | Fn]) ≥ φ(Xn)

And for integrability, it is obvious.

Now we are about to preceed to reveal Optional Sampling Theorem:

Theorem 2.7. Let Y ∈ L1(Ω,F ,P) and a filtration {Fn : n ∈ N}, then set Xn =
E (Y | Fn), let α be a optional r.v. with {Fn : n ∈ N}, then, Xα = E [Y | Fα].

Proof. Firstly, we check integrability, by Jensen’s inequality:

E|Xα| =
∑

n∈N∪{∞}

E|Xα|1{α=n} =
∑

n∈N∪{∞}

E|Xn|1{α=n}

≤
∑

n∈N∪{∞}

E
[
E (|Y | | Fn)1{α=n}

]
=

∑
n∈N∪{∞}

E
[
E
(
|Y | · 1{α=n} | Fn

)]
=

∑
n∈N∪{∞}

E|Y |1{α=n} = E|Y | < +∞

14
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Next, we need to show that Xα ∈ Fα, indeed, ∀ x ∈ R:

{Xα ≤ x} ∩ {α ≤ n} =
n⋃
k=1

({Xα ≤ x} ∩ {α = k}) =
n⋃
k=1

({Xk ≤ x} ∩ {α = k}) ∈ Fn

, so {Xα ≤ x} ∈ Fα,∀ x =⇒ Xα ∈ Fα. Finally, only need to check, ∀ A ∈ Fα:

EXα1A =
∑
n

EXα1A1{α=n} =
∑
n

EXn1A1{α=n}

=
∑
n

EXn1A∩{α=n} =
∑
n

EY 1A∩{α=n} = EY 1A

Then we finished the proof, following the definition of conditional expectation.

Corollary 2.8. Let Y ∈ L1(Ω,F ,P) and a filtration {Fn : n ∈ N}, then set
Xn = E (Y | Fn). Let α, β be two optional r.v.s with {Fn : n ∈ N} and α ≤ β, then,
{Xα, Xβ} is a martingale relative to {Fα,Fβ}.

Proof. Leave as homework.

Remark 2.9. To generalise it, for {αn : n ∈ N} optional r.v.s, and α1 ≤ α2 ≤ · · · ≤ αn ≤
· · ·, then {Xαn} is a martingale relative to {Fαn : n ∈ N}.

Theorem 2.9. Let {Xn : n ∈ N} is {Fn}-martingale, and α, β are bounded optional
r.v.s satisfying α ≤ β, then {Xα, Xβ} is a {Fα,Fβ}-martingale.

Proof. As definition, first to check integrability:

E|Xα| =
N∑
j=1

E|Xα|1{α=j} =
N∑
j=1

E|Xj|1{α=j} =
N∑
j=1

E|X1|1{α=j} = E|X1| < +∞

Then we prove it is martingale by show it is both super- and sub- martingale, ∀ A ∈ Fα,
∀ k ≥ j, we have A ∩ {α ≤ j} ∈ Fj ⊆ Fk and {β ≤ k} ∈ Fk, then:

EXk1{A∩{α=j}∩{β>k}} ≥ EXk+11{A∩{α=j}∩{β>k}}

, one can rewrite it into:

EXk1{A∩{α=j}∩{β≥k}} − EXk+11{A∩{α=j}∩{β≥k+1}} ≥ EXk1{A∩{α=j}∩{β=k}}

Summing over k from j to N noticing that on {α = j}, j ≤ β ≤ N :

EXα1{A∩{α=j}} ≥ EXβ1{A∩{α=j}}

Then summing over j from 1 to N to get:

EXα1A ≥ EXβ1A

, now choose A = {ω : E [Xβ | Fα] > Xα} ∈ Fα, then:

EXα1A ≥ E [E (Xβ | Fα)1A] =⇒ P(A) = 0

Therefore, it is same for submartingale, then finished the proof.

Remark 2.10. It is true for sub/super-martingale, even is generalisation of corollary 2.8.

Now before we proceed, let’s look at a simple example:
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Example 2.6. The bounded condition is useful, but we can construct for a general
optional r,.v. α, we define a truncation: αk = α∧k, which is bounded optioanl r.v.

Then a natural question is that what if optional r.v. is not bounded, then comes following:

Theorem 2.10. Let {Xn : n ∈ N ∪ {∞}} be a martingale relative to {Fn : n ∈
N∪{∞}}, and α, β are two optional r.v.s, with α ≤ β, then {Xα, Xβ} is martingale
relative to {Fα,Fβ}.

Proof. (1) We start with supermartingale with X∞ = 0. Then ∀ n ∈ N,

Xn ≥ E[X∞ | Fn] = 0 a.s. =⇒ Xn ≥ 0, ∀ n ∈ N a.s.

Next, ∀j ∈ N, Xα1{α=j} = Xα∧n1{α=j}. Fix j and set n→∞, we have:

Xα1{α=j} = lim inf
n→∞

Xα∧n1{α=j}

Sum over j, we get:
Xα1{α<∞} = lim inf

n→∞
Xα∧n1{α<∞}

Besides, Xα1{α=∞} = 0 ≤ lim infn→∞Xα∧n1{α=∞}. As a consequence, we have:

Xα ≤ lim inf
n→∞

Xα∧n

By Fatou’s lemma,

EXα ≤ E lim inf
n→∞

Xα∧n ≤ lim inf
n→∞

EXα∧n ≤ EX1

Since α ∧ n is bounded optional r.v. Thus, Xα, Xβ ∈ L1(Ω,F ,P), ∀A ∈ Fα:

EXk1{A∩{α=j}∩{β≥k}} − EXk+11{A∩{α=j}∩{β≥k+1}} ≥ EXk1{A∩{α=j,β=k}}

, ∀M ≥ j, sum over k from j to M to obtain:

EXα1{A∩{α=j}} − EXM+11{A∩{α=j}∩{β≥M+1}} ≥ EXβ1{A∩{α=j}∩{β≤M}}

Thus, EXα1{A∩{α=j}} ≥ EXβ1{A∩{α=j}∩{β≤M}}. As Xβ ≥ 0, by MCT, we get:

EXα1{A∩{α=j}} ≥ EXβ1{A∩{α=j}∩{β<∞}}

Sum over j, we get:
EXα1{A∩{α<∞}} ≥ EXβ1{A∩{β<∞}}

Besides, noting that X∞ = 0,

EXα1{A∩{α=∞}} = EX∞1{A∩{α=∞}} = 0 = EX∞1{A∩{β=∞}} = EXβ1{A∩{β=∞}}

Combining two formula, we get:

EXα1A ≥ EXβ1A =⇒ EXα1A ≥ E[E[Xβ | Fα] · 1A]

Thus, Xα ≥ E[Xβ | Fα].
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(2) In general case of supermartingale, we set X ′
n = E[X∞ | Fn], then {X ′

n : n ∈
N ∪ {∞}} is a {Fn : n ∈ N ∪ {∞}}-martingale and {Xn − X ′

n : n ∈ N} is a
supermartingale relative to {Fn : n ∈ N}. On one hand, {X ′

α, X
′
β} is a martingale

relative to {Fα,Fβ}. On the other hand, from X ′
∞ = X∞, we can conclude that

{Xα −X ′
α, Xβ −X ′

β} is a supermartingale relative to {Fα,Fβ}.

(3) In the case of submartingale, {−Xn : n ∈ N ∪ {∞}} is a supermartingale.

(4) In the case of martingale, by (2) and (3).
Finally, we completed the proof.

After providing these thrilling theorems, we introduce martingale transformation.

Definition 2.10. Let Y = {Yn : n ∈ N}, on (Ω,F ,P) be a martingale relative to
{Fn : n ∈ N} with Y0 = 0, and another Z = {Zn : n ∈ N} is a {Fn : n ∈ N}-
predictable process. Then if we set, X0 = 0 and:

Xn =
n∑
k=1

Zk(Yk − Yk−1)

, we say X = {Xn : n ∈ N} is a martingale transfomation of Y through Z.

Remark 2.11. If you learnt stochastic calculus, then this is some how discrete version of:

X =

∫
ZdY

Next, we introduce two propositions of martingale transformation:

Proposition 2.11. Let Y be a {Fn : n ∈ N}-martingale, and Z is a {Fn : n ∈ N}-
predictable process (non-negative), so if X, is a martingale transformation of Y
through Z, is integrable, then X is {Fn : n ∈ N}-martingale.

Proof. By definition, X is {Fn : n ∈ N}-adapted and integrable, only need to check:

E [Xn+1 | Fn] = E [Zn+1(Yn+1 − Yn) +Xn | Fn] = Xn + Zn+1 (E [Yn+1 | Fn]− Yn) = Xn

, ∀ n ∈ N, then we completed the proof.

Following is to extend the result to sub-/super-martingale:

Proposition 2.12. Let Y be a {Fn : n ∈ N}-sub/super-martingale, and Z is a
{Fn : n ∈ N}-predictable process (non-negative), so if X, is a martingale transfor-
mation of Y through Z, is integrable, then X is {Fn : n ∈ N}-sub/super-martingale.

Proof. Leave as homework.

2.4 Backward Martingale

Since for continuous stochastic process, when dealing with optional sampling theorem,
we need to use some properties in backward martingale, then we state some:
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Definition 2.11. Let X = {Xn : n ∈ N} be an integrable process on (Ω,F ,P), let
{Fn : n ∈ N} be a sequence of decreasing σ-algebra with Xn ∈ Fn,∀ n a.s. then:

(a) IfXn+1 ≥ E (Xn | Fn+1), thenX is a {Fn : n ∈ N}-backward supermartingale.

(b) If Xn+1 ≤ E (Xn | Fn+1), then X is a {Fn : n ∈ N}-backward submartingale.

(c) If Xn+1 = E (Xn | Fn+1), then X is a {Fn : n ∈ N}-backward martingale.

Remark 2.12. ∀ n ≤ 0, Yn = X−n,Gn = F−n, then {Yn : n ∈ N} is martingale.

Next, listing some properties with backward martingale, which are similar than previous:

Proposition 2.13. Let {Fn : n ∈ N} be a sequence of decreasing σ-algebra, X =
{Xn : n ∈ N} be a {Fn : n ∈ N}-backward submartingale. Also φ be increasing
convex function, with φ(Xn) ∈ L1(Ω,F ,P),∀ n. Then {φ(Xn) : n ∈ N} is also a
{Fn : n ∈ N}-backward submartingale.

Proof. By Jensen’s inequality, we have:

φ(Xn+1) ≤ φ (E [Xn | Fn+1]) ≤ E [φ(Xn) | Fn+1]

,∀ n ∈ N, therefore we completed the proof.

Remark 2.13. For backward martingale, φ need not to be increasing.

And it also has really good properties:

Corollary 2.14. If in addition, φ ≥ 0, then {φ(Xn) : n ∈ N} is u.i.

Proof. Since its submartingale, thus ∀ A ∈ Fn:

Eφ(Xn)1A ≤ E [E (φ(X1) | Fn)1A] = Eφ(X1)1A

If we choose A = {ω : φ(Xn) > M} = {Xn > φ−1(M)} ∈ Fn, then:

sup
n∈N

Eφ(Xn)1{φ(Xn)>M} ≤ sup
n∈N

Eφ(X1)1{φ(Xn)>M}

Lastly, since as M → +∞, we have:

sup
n∈N

P(φ(Xn) > M) ≤ sup
n∈N

1

M
Eφ(Xn) =

1

M
Eφ(X1) −→ 0

, then the integrability of φ(X1) implies u.i. of {φ(Xn) : n ∈ N}.

Lastly, we extend this to backward martingale:

Proposition 2.15. Let {Fn : n ∈ N} be a decreasing σ-algebra, and X = {Xn :
n ∈ N} be a {Fn : n ∈ N}-backward martingale. Then X is uniformly integrable.

Proof. Leave as homework.

2.5 Markov Property

We stop the procedure of backward martingale, then into a more interesting topic:
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Definition 2.12. A stochastic process X = {Xn : n ∈ N} on (Ω,F ,P) satisfying:

∀ B ∈ B(R),∀ n, P(Xn+1 ∈ B | X1, · · · , Xn) = P(Xn+1 ∈ B | Xn)

, then X is said to have Markov Property.

Any process having Markov property is called markov process/chain, another definition:

Definition 2.13. A stochastic process X = {Xn : n ∈ N} on (Ω,F ,P) is a markov
process if and only if: ∀ integrable Y ∈ σ(Xn+1),

E (Y | X1, · · · , Xn) = E (Y | Xn)

Proof. (1) Forward direction, we only need to choose Y = 1{Xn+1∈B}.

(2) For backward direction, by linearity it holds for Y =
∑M

i=1 ai1Ai
for some Ai ∈

σ(Xn+1). By approximation from below, it holds for non-negative Y ∈ σ(Xn+1).
Then general cases can be splited into positive and negative parts.

The following corollary extends above to further:

Corollary 2.16. A stochastic process X = {Xn : n ∈ N} on (Ω,F ,P) is a markov
process, then ∀ k ∈ N, Y ∈ σ(Xn+k):

E (Y | X1, · · · , Xn) = E (Y | Xn)

Proof. By markov property, E [Y | X1, · · · , Xn+k−1] = E [Y | Xn+k−1] ∈ σ(Xn+k−1), so

∀ A ∈ σ(Xn, · · · , Xn+k−1),E [E (Y | X1, · · · , Xn+k−1)1A] = EY 1A

Hence, we have starting point that ∀ k ∈ N:

E [Y | Xn+k−1] = E [Y | X1, · · · , Xn+k−1] = E [Y | Xn, · · · , Xn+k−1]

Next, we prove by induction, for k = 1 is above, assume it holds for k − 1, then:

E [Y | X1, · · · , Xn] = E [E (Y | X1, · · · , Xn+k−1) | X1, · · · , Xn]

= E [E (Y | Xn+k−1) | X1, · · · , Xn] = E [E (Y | Xn+k−1) | Xn]

= E [E (Y | Xn, · · · , Xn+k−1) | Xn] = E [Y | Xn]

Then we finished the proof.

To conclude the markov property, we present following more general theorem:

Theorem 2.17. Let X = {Xn : n ∈ N} be a process on (Ω,F ,P), then following
are equivalent:

(a) X is a Markov process.

(b) ∀ n, ∀M ∈ σ(Xn+1, Xn+2, . . . ),P(M | X1, · · · , Xn) = P(M | Xn).
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(c) ∀ n, ∀M1 ∈ σ(X1, . . . , Xn),M2 ∈ σ(Xn+1, Xn+2, · · · ), then:

P(M1M2 | Xn) = P(M1 | Xn)P(M2 | Xn)

Proof. (1) First to show (b) =⇒ (c):

RHS = E [1M1 | Xn]E [1M2 | Xn] = E [1M1E [1M2 | Xn] | Xn]

(b)
= E [1M1E [1M2 | X1, · · · , Xn] | Xn] = E [E [1M11M2 | X1, · · · , Xn] | Xn]

= E [1M11M2 | Xn] = LHS

(2) Then we check (c) =⇒ (b), ∀ A ∈ σ(Xn),M
′ ∈ σ(X1, · · · , Xn), we have:

E [E [1M | Xn]1AM ′ ] = E [E [1M | Xn]1M ′ · 1A]
= E {E [E (1M | Xn)1M ′ | Xn]1A} = E [E [1M | Xn]E [1M ′ | Xn] · 1A]
(c)
= E [E [1MM ′ | Xn]1A] = E [1MM ′1A] = E [1M1AM ′ ]

(3) Easily, for (b) =⇒ (a), choose M = 1{Xn+1∈B}.

(4) For (a) =⇒ (b), similar argument, ∀ k ∈ N, E [Y | X1, · · · , Xn] = E [Y | Xn] for
all bounded Y ∈ σ(Xn+1, · · · , Xn+k). Thus, for M ∈

⋃∞
k=1 σ(Xn+1, · · · , Xn+k), (b)

holds. Hence, (b) holds for M ∈ σ(
⋃∞
k=1 σ(Xn+1, · · · , Xn+k)) = σ(Xn+1, · · · ).

Therefore, we completed the proof.

To see the existence of markov process, we provide an example:

Example 2.7. LetX = {Xn : n ∈ N} be an independent process, thenX is markov
process,besides, corresponding random walk (sum process), Sn = X1 + · · · + Xn,
then S = {Sn : n ∈ N}, is also markov process.

Now, before proceeding, we define post-α process:

Definition 2.14. Let {Xn : n ∈ N} be a stochastic process, and α be an optional
r.v. with α <∞ a.s. Then {Xα+n : n ∈ N} is called the post-α process.

Correspondingly, σ({Xα+n : n ∈ N}) is called the post-α σ-algebra, F ′
α.

Theorem 2.18. Let X = {Xn : n ∈ N} be a stationary independent process, α is
an optional r.v. relative to {FXn : n ∈ N} with α <∞ a.s. Then:

(a) The pre-α and post-α are independent, i.e.:

{A : A ∩ {α ≤ k} ∈ FXk ,∀ k} = FXα ⊥ FXα
′
= σ({Xα+n : n ∈ N})

(b) The post-α process, i.e. {Xα+n : n ∈ N}, is also a stationary independent
process with the same distribution of X.
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Proof. Firstly, ∀ A ∈ Fα, k ∈ N,∀ Bj ∈ B(R) with 1 ≤ j ≤ k, we have:

P
(
A
⋂
{Xα+j ∈ Bj, 1 ≤ j ≤ k}

)
=

∞∑
n=1

P (A ∩ {α = n} ∩ {Xα+j ∈ Bj, 1 ≤ j ≤ k})

=
∞∑
n=1

P (A ∩ {α = n} ∩ {Xn+j ∈ Bj, 1 ≤ j ≤ k}) (A ∩ {α = n} ∈ FXn ⊥ σ(Xn+j))

=
∞∑
n=1

P(A ∩ {α = n}) ·
k∏
j=1

P(Xn+j ∈ Bj) = P(A) ·
k∏
j=1

P(Xn+j ∈ Bj)

Choose A = Ω, B1 = · · · = Bk−1 = R to obtain the indentically distributed of Xα+k

and Xn+k. Choose A = Ω to obtain the independence of post-α process. Indepdence of
σ-algebras follows from distribution. Then finish the proof.

Next, we just present a complicated theorem but worthy to know:

Theorem 2.19. Let {Xn : n ∈ N} be markov process, and a finite α optional r.v.
relative to {FXn : n ∈ N}, then, ∀M ∈ FXα :

P(M | FXα ) = P(M | α,Xα)

Proof. Read the textbook at Theorem 9.2.5.

Lastly, we end this chapter by providing some notification about markov process:

Remark 2.14. (1) The sum of two markov process may not be a markov process:

Example 2.8. Let X be a r.v. and set Xn = X, Yn = (−1)nX, then {Xn : n ∈
N} and {Yn : n ∈ N} are markov chains for sure. As Xn+Yn = 2Xn12|n, then
{Xn + Yn : n ∈ N} is not a markov chain.

(2) A markov chain may not be a martingale:

Example 2.9. Let X = {Xn : n ∈ N} be an independent process and set
S = {Sn : n ∈ N} where Sn = X1 + · · ·+Xn, then both X and S are markov
chain. However, if Xn+1 is not deterministic, then by independence:

E
[
Xn+1 | FXn

]
= EXn+1 ̸= Xn

, thus X is not a martingale. Same for S if EXn+1 ̸= 0.

(3) A martingale may not be a markov chain:

Example 2.10. Let X = {Xn : n ∈ N} be an independent square integrable
process with EXn = 0, ∀ n. Let W be a bounded r.v. independent of X. For
n ∈ N, set Yn = W (Xn−1+ · · ·+X1+1) and Fn = σ(W,X1, · · · , Xn−1). Then
Y = {Yn : n ∈ N} is martingale w.r.t {Fn : n ∈ N}. But, not a markov chain.
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Proof. Indeed, Yn+1 − Yn = WXn and Y1 = W , then on one hand:

E
[
Y 2
n | Y1, · · · , Yn

]
= E

[
(Yn +WXn)

2 | Y1, · · · , Yn
]

= Y 2
n + 2YnE [WXn | Y1, · · · , Yn] + E

[
W 2X2

n | Y1, · · · , Yn
]

= Y 2
n + 2YnWEXn +W 2EX2

n = Y 2
n +W 2EX2

n

On another hand,

E
[
Y 2
n+1 | Yn

]
= E

[
(Yn +WXn)

2 | Yn
]

= Y 2
n + 2E [YnWXn | Yn] + E

[
W 2X2

n | Yn
]

= Y 2
n + 2E [E (YnWXn | Yn,W ) | Yn] + E

[
E
(
W 2X2

n | Yn,W
)
| Yn

]
= Y 2

n + 2E [YnWEXn | Yn] + E
[
W 2EX2

n | Yn
]

= Y 2
n + E

[
W 2 | Yn

]
· EX2

n

And clearly, these two are not equal, then we completed the proof.

2.6 Homeworks

The followings are exercises for this section:

Problem 2.1. Let {Fn : n ∈ N} be a filtration, X = {Xn : n ∈ N} be an adapted
process relative to {Fn : n ∈ N} such that Xn ∈ L1(Ω,F ,P). Prove that

(1) X is a {Fn : n ∈ N}-supermartingale if and only if Xn ≥ E [Xn+k | Fn] for
any fixed k ∈ N.

(2) X is a {Fn : n ∈ N}-submartingale if and only if Xn ≤ E [Xn+k | Fn] for any
fixed k ∈ N.

(3) X is a {Fn : n ∈ N}-martingale if and only if Xn = E [Xn+k | Fn] for any
fixed k ∈ N.

(4) What is the case of backward supermartingale/submartingale/martingale if
{Fn : n ∈ N} is a family of decreasing σ-algebras? State the results and prove
them.

Problem 2.2. If Xn is a {Fn : n ∈ N}-martingale and Xn+1 ∈ Fn for all n ∈ N,
prove that Xn = X1 for all n ∈ N a.s. Use this result to show the uniqueness
of Doob’s decomposition X = Y + Z for martingale Y and increasing predictable
process Z.

Problem 2.3. For a filtration {Fn : n ∈ N} and an optional random variable α,
prove that Fα is a σ-algebra and α ∈ Fα.
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Problem 2.4. Let Y ∈ L1(Ω,F ,P) be a random variable and {Fn : n ∈ N} be a
filtration. Set Xn = E [Y | Fn] for n ∈ N ∪ {∞}.

(1) Prove that {Xn : n ∈ N ∪ {∞}} is a {Fn : n ∈ N ∪ {∞}}-martingale.

(2) If α ≤ β are optional random variables relative to {Fn, n ∈ N}, then {Xα, Xβ}
is a martingale relative to {Fα,Fβ}.

Problem 2.5. Let Y be a {Fn : n ∈ N}-submartingale/{Fn : n ∈ N}-
supermartingale, Z be a {Fn : n ∈ N}-predictable non-negative process, and X
be a martingale transformation of Y through Z. If X is integrable, then prove that
X is a {Fn : n ∈ N}-submartingale/{Fn : n ∈ N}-supermartingale.

Problem 2.6. Let {Fn : n ∈ N} be a sequence of decreasing σ-algebras, X =
{Xn : n ∈ N} be a backward martingale relative to {Fn : n ∈ N}. Prove that X is
uniformly integrable.

Problem 2.7. Let Xn be an integrable random variable for all n ∈ N satisfying:

E [Xn+1|X1, . . . , Xn] =
X1 + . . .+Xn

n

Prove that
{
X1+...+Xn

n
: n ∈ N

}
is a martingale relative to {FXn : n ∈ N}.
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3 Continuous-time Stochastic Process

The shift from discrete to continuous time marks a profound expansion in our modeling
horizon. Here, randomness is no longer observed at isolated ticks of a clock, but evolves
fluidly, moment by moment. This chapter formalizes that vision, introducing the core
language of continuous-time processes: sample paths, stochastic continuity, modifications,
and filtrations. We confront the subtle distinctions between different notions of equality
for processes and meet the powerful Kolmogorov Continuity Theorem, a result that often
grants us the gift of continuous paths. These concepts are the essential scaffolding for
everything that follows, from martingales and Markov processes to the Brownian motion.

3.1 Formalisation of Process

As usual, we first define what is continuous stochastic process:

Definition 3.1. X = {Xt : t ≥ 0} of r.v.s on (Ω,F ,P) is a continuous-time
stochastic process.

Remark 3.1. 1. If we want continuous stochastic process degenerate, by setting Xt =
Xn, t ∈ [n, n+ 1).

2. There are two ways of interpreting the r.v.s, Xt(ω) : Ω× [0,+∞) 7→ Rd/Cd:

(a) From function perspective: (ω, t) 7→ Xt(ω).

(b) From r.v. perspective:

X :Ω 7→ {function on [0,+∞)}
ω 7→ Xt(ω)

This is called sample path/trajectory, t 7→ Xt(ω),∀ ω ∈ Ω.

Then we could start to add contraint on continuous process:

Definition 3.2. Let X be a process on (Ω,F ,P),

(a) For a.s. (ω), t 7→ Xt(ω) is continuous, then we say X is continuous. (sample
path is continuous)

(b) For a.s. (ω), t 7→ Xt(ω) is right continuous on [0,+∞) with finite left limits
on [0,+∞), we say the smaple path of X is RCLL. (Right Continuous Left
Limit)

(c) For a.s. (ω), t 7→ Xt(ω) is left continuous on [0,+∞) with finite right limits
on [0,+∞), we say the smaple path of X is LCRL. (Left Continuous Right
Limit)

Beside, we propose a new continuous concept that is widely used later:

Definition 3.3. Let X be a stochastic process on (Ω,F ,P). If ∀ ε > 0,∀ t ≥ 0:

lim
s→t

P (|Xs −Xt| > ε) = 0

24



33
.

, then we say that X is stochastic continuous.

For continuous time, since we add more points in it, then new concepts come out:

Definition 3.4. Let X, Y be a stochastic process on (Ω,F ,P). If ∀ t ≥ 0,∀ ω ∈ Ω:

Xt(ω) = Yt(ω)

, then we say they are same.

However, above is too demanding for a process:

Definition 3.5. Let X, Y be two stochastic process on (Ω,F ,P). If:

P (Xt = Yt,∀ t ≥ 0) = 1

, then we say X, Y are indistinguishable.

Also we could loose our constraint, below is the most useful one:

Definition 3.6. Let X, Y be two stochastic process on (Ω,F ,P). If:

P (Xt = Yt) = 1,∀ t ≥ 0

, then we say X is a modification of Y .

Remark 3.2. From the definition, we see: Indistinguishable =⇒ Modification.

Lastly, since r.v.s’ most interesting property is just distribution:

Definition 3.7. Let X, Y be two stochastic process on (Ω,F ,P).
If ∀ n ≥ 1,∀ 0 ≤ t1 < t2 < · · · < tn <∞, ∀ B(Rd):

P ((Xt1 , Xt2 , · · · , Xtn) ∈ A) = P ((Yt1 , Yt2 , · · · , Ytn) ∈ A)

, then we say that X and Y have the same finite-dimensional distributions.

Remark 3.3. From the definition, we see: Modification =⇒ finite-dimensional distribution.

As proposed above, it is still difficult to verify, then Kolmogorov gives following:

Theorem 3.1. (Kolmogorov Continuity Theorem)
Let X = {Xt : t ∈ [0, T0]} be a process, T0 > 0. If ∃ α, β, C > 0, s.t ∀ t, s ∈ [0, T0]:

E |Xt −Xs|α ≤ C · |t− s|1+β

, then there exists a process Y satisfying:

(a) Y is a modification of X.

(b) Y has continuous trajectory.
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(c) ∀ r ∈ (0, β/α), ∃ r.v. δ(ω), C ′ > 0, s.t:

P

ω ∈ Ω : sup
s,t∈[0,T0]

0<|t−s|<δ(ω)

|Yt(ω)− Yt(ω)|
|t− s|r

< C ′

 = 1

Proof. Firstly, let’s check if the process satisfy the criterion, what properties it will have:

1. The process itself is stochastically continuous, ∀ ε > 0,∀ t, s ∈ [0, T0]:

lim
s→t

P(|Xt −Xs| > ε) ≤ lim
s→t

ε−αE|Xt −Xs|α ≤ Cε−α lim
s→t
|t− s|1+β −→ 0

2. The process itself have ”good” properties on a ”large” set, to see this, we set:

An =

{
ω ∈ Ω : max

1≤k≤2nT0

∣∣∣X k
2n
(ω)−X k−1

2n
(ω)
∣∣∣ ≤ C1/α2−γn

}
, for some γ we will point out later. Now, its complement follows:

P(Acn) = P

(
max

1≤k≤2nT0

∣∣∣X k
2n
(ω)−X k−1

2n
(ω)
∣∣∣ > C1/α2−γn

)
= P

(
2nT0⋃
k=1

{∣∣∣X k
2n
(ω)−X k−1

2n
(ω)
∣∣∣ > C1/α2−γn

})

≤
2nT0∑
k=1

P
(∣∣∣X k

2n
(ω)−X k−1

2n
(ω)
∣∣∣ > C1/α2−γn

)
≤

2nT0∑
k=1

C · C−1 · 2αγn2−n(1+β) = T02
n(αγ−β)

Here, if we set our γ such that: αγ − β < 0, then by Borel-Cantelli’s Lemma:

∞∑
n=1

P(Acn) < +∞ =⇒ P
(
lim inf
n→∞

An

)
= 1

Then by construction, we set: Ω∗ = lim infn→∞An ∈ F , clearly it holds:

∀ ω∗ ∈ Ω,∀ n ≥ n∗(ω), max
1≤k≤2nT0

∣∣∣X k
2n
(ω)−X k−1

2n
(ω)
∣∣∣ ≤ C1/α2−γn

Since on this set only countable but fortunately dense set has such property, define:

D =
∞⋃
n=0

{
k

2n
: 1 ≤ k ≤ 2nT0

}
:=

∞⋃
n=0

Dn

Clealy, it is countable and dense on [0, T0], then fix ω ∈ Ω∗, we claim that (leave
for reader to verify): ∀ n ≥ n∗(ω),∀ m > n, ∀ s, t ∈ Dm, 0 < t− s < 2−n:

|Xt(ω)−Xs(ω)| ≤ 2C1/α

m∑
j=n+1

2−γj
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Lastly, set δ(ω) = 2−n
∗(ω),∀ s, t ∈ D, 0 < t− s < δ(ω), we can choose m,n ≥ n∗(ω)

s.t: s, t ∈ Dm, 2
−n−1 ≤ t− s < 2−n:

|Xt −Xs| ≤ 2C1/α

m∑
j=n+1

2−γj ≤ 2C1/α · 2−r(n+1) · 1

1− 2−γ
≤ 2C1/α

1− 2−γ
|t− s|γ

After all the preparation, we reconstruct our Y , by defining:

Yt(ω) =


0, ∀ ω /∈ Ω∗, t ∈ [0, T0]

Xt(ω), ∀ ω ∈ Ω∗, t ∈ D
lim
tn∈D
tn→t

Xtn(ω), ∀ ω ∈ Ω∗, t /∈ D

Finally, reader can easily checked such defined process satisfy (a) - (c).

The above proving trick is useful when we want to contruct some RCLL process, just to
use its left limit, provided exists.

3.2 Filtration

Next, another problem is how to fill in the gap between discrete points:

Definition 3.8. On (Ω,F ,P), {Ft : t ≥ 0} is a family of σ-algebra satisfying:

Fs ⊆ Ft ⊆ F ,∀ 0 ≤ s < t < +∞

Then {Ft : t ≥ 0} is called filtration.

Remark 3.4. We use following notataion:

F∞ = σ

(⋃
t≥0

Ft

)

Also for a stochastic process, given process X, set FXt = σ({Xs : 0 ≤ s ≤ t}), i.e. the
smallest σ-algebra such that Xs is measurable.

As usual to define our adapted process:

Definition 3.9. Let X be a process, {Ft : t ≥ 0} be a filtration, if Xt ∈ Ft,∀ t ≥ 0,
then X is adapted {Ft : t ≥ 0}.

Remark 3.5. 1. Every X is adapted relative to {FXt , t ≥ 0}.

2. We call {Ft : t ≥ 0} is right-continuous if Ft = Ft+,∀ t ≥ 0, and left-continuous
if Ft = Ft−,∀ t ≥ 0, here we use following notations:

Ft− = σ

(⋃
s<t

Fs

)
,Ft+ =

⋂
s>t

Fs

3. ∀ A,P(A) = 0 =⇒ A ∈ F0.
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4. Clearly, if Y is a modification of X, X is adapted to {Ft : t ≥ 0}, then Y is adapted
to {Ft : t ≥ 0}.

Now, we are going to restrict ourself into more specific situation:

Definition 3.10. On (Ω,F ,P), X is measurable if ∀ A ∈ B(Rd):

{(ω, t) ∈ Ω× [0,+∞) : Xt(ω) ∈ A} ⊆ F ⊗ B([0,+∞))

And another is ”gradually” measurable as time goes:

Definition 3.11. On (Ω,F ,P), X is progressively measurable with respect to fil-
tration {Ft : t ≥ 0}, if ∀ t ≥ 0, ∀ A ∈ B(Rd):

{(ω, s) ∈ Ω× [0, t] : Xt(ω) ∈ A} ⊆ Ft ⊗ B([0, t])

Following proposition presents relation between measurable and progressively measurable:

Proposition 3.2. (a) Any progressively measurable process is measurable pro-
cess.

(b) If a process is measurable and adapted to a filtration, then the process has a
modification that is progressively measurable.

Proof. The proof is omitted since it just verifies the condition.

A natural question is how it relates to normal adapted process:

Proposition 3.3. If the process X is adapted to the filtration {Ft : t ≥ 0} and
every sample path of X is right-continuous, then X is progressively measurable
relative to {Ft : t ≥ 0}.

Proof. Since the process is right-continuous, we define, ∀ t ≥ 0, n ∈ N, 0 ≤ s ≤ t:

X(n)
s (ω) = X (k+1)t

2n
(ω), for s ∈

(
kt

2n
,
(k + 1)t

2n

]
, k ∈ N

Then for this new process, or more precisely:

(ω, s) 7→ X(n)
s (ω) is Ft ⊗ B([0, t])

Lastly, using the right continuity: limn→∞X
(n)
s (ω) = Xs(ω), which holds naturally.

3.3 Properties of Stopping Times

Then we present the most important concepts, stopping time, before that:

Definition 3.12. On (Ω,F ,P), a random time, T , is a r.v. with values in [0,+∞].
Let X be a process, XT is a r.v. such that XT (ω) = XT (ω)(ω). Define the σ-algebra
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generated by XT as:

σ(XT ) = {{XT ∈ A} ∪ {T =∞} : A ∈ B(Rd)}

Remark 3.6. The verification of σ(XT ) is indeed a σ-algebra left as homework.

Then a stopping and optional time is based on random time:

Definition 3.13. (Ω,F ,P) equipped with a filtration {Ft : t ≥ 0}. A random time
T satisfies: {T ≤ t} ∈ Ft,∀ t ≥ 0, is called a stopping time of {Ft : t ≥ 0}.
And T is called optional time of {Ft : t ≥ 0} if {T < t} ∈ Ft.

Remark 3.7. Recall the same definition in discrete-time setting:

{T ≤ t} discrete−−−−→ {T ≤ n}

{T < t} discrete−−−−→ {T < n} = {T ≤ n− 1}

A natural eager is to see the connection between optional and stopping times:

Proposition 3.4. (a) A stopping time of {Ft : t ≥ 0} is always an optional time
of {Ft : t ≥ 0}.

(b) If {Ft : t ≥ 0} is right-continuous, then any optional time of {Ft : t ≥ 0} is
a stopping time of {Ft : t ≥ 0}.

Proof. (a) Notice that for each {T ≤ t− 1
n
} ∈ Ft− 1

n
⊆ Ft, then it holds since:

{T < t} =
∞⋃
n=1

{
T < t− 1

n

}
∈ Ft, ∀ t ≥ 0

(b) To better use the right continuity, for any fixed k ∈ N:

{T ≤ t} =
∞⋂
n=k

{
T < t+

1

n

}
∈ Ft+ 1

k
,∀ n ≥ k

And above holds for any k ∈ N, then {T ≤ t} ∈ Ft+ = Ft, by right continuity.

If we use the ”right process”, then it is obvious right-continuous:

Corollary 3.5. If T is an optional time of {Ft : t ≥ 0}, and set Gt = Ft+, then T
is a stopping time of {Gt : t ≥ 0}.

Proof. It is easy to check Gt is right-continuous.

To avoid abstractness, we present following two examples:

Example 3.1. Clearly, if T is deterministic, then T is a stopping time of corre-
sponding filtration.

More concretely, hitting time is widely used for Brownian motion:
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Example 3.2. Let X be an adapted process relative to filtration {Ft : t ≥ 0}.
Choose A ∈ B(Rd), then T is known as hitting time if we set:

T = inf{t ≥ 0 : Xt(ω) ∈ A}

Consequently, we could verify followings properties: (left as homework)

1. If A is open, the sample path of X are right-continuous, then T is an optional
time of {Ft : t ≥ 0}.

2. If A is closed, the sample path of X are continuous, then T is a stopping time
of {Ft : t ≥ 0}.

Then we are about to show some properties of stopping times:

Proposition 3.6. If T, S are stopping time of {Ft : t ≥ 0}, then T ∧S, T ∨S, T +S
are all stopping time of {Ft : t ≥ 0}.

Proof. Simply, we rewrite into:

1. T ∧ S : ∀ t, {T ∧ S ≤ t} = {T ≤ t} ∪ {S ≤ s} ∈ Ft.

2. T ∨ S : ∀ t, {T ∨ S ≤ t} = {T ≤ s} ∩ {S ≤ t} ∈ Ft.

3. T + S : This is non-trivial, but notice following seperarion:

{T+S ≤ t} = {T = 0, S ≤ t}∪{S = 0, T ≤ t}∪{0 < T < t, 0 < S < t, T+S ≤ t} ∈ Ft

For third terms, we could use rational points to argue, and leave for reader.

Similar but weaker result for optional times:

Proposition 3.7. If T, S are optional times of {Ft : t ≥ 0}, then T ∧ S, T ∨ S are
optional times of {Ft : t ≥ 0}.

Proof. We skipped this proof, since it just follows 3.6.

If we want to recover the third one in 3.6 for optional times, we need following condition:

Proposition 3.8. If T, S are optional times of {Ft : t ≥ 0}, then T + S is an
optional time of {Ft : t ≥ 0}. If either T, S > 0 or T > 0 is a stopping time, then
T + S is a stopping time of {Ft : t ≥ 0}.

Proof. For the first case (T, S > 0), it is simple, since from 3.6, we know:

{T + S ≤ t} = {0 < T < t, 0 < S < t, S + T ≤ t} ∈ Ft

For second case, we omit the proof, and encourage reader to try.

Then we could also study its limiting behavior:
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Proposition 3.9. If {Tn : n ∈ N} is a sequence of optional times relative to
{Ft : t ≥ 0}, then:

sup {Tn : n ∈ N} , inf{Tn : n ∈ N}, lim sup
n∈N

Tn, lim inf
n∈N

Tn,

are all optional times of {Ft : t ≥ 0}.

Proof. Simply, we could rewrite them into:

1. {supn Tn < t} = ∩n∈N{Tn < t}.

2. {infn Tn < t} = ∪n∈N{Tn < t}.

3. lim supn→∞ = limM→∞ supn≥M = ∩M∈N supn≥M .

4. lim infn→∞ = limM→∞ infn≥M = ∪M∈N supn≥M .

Then using the properties of σ-algebra, we completed the proof.

Remark 3.8. If {Tn : n ∈ N} is stopping times, then supTn is also a stopping time.

Since we finally want to change time with stopping time, then need filtration:

Definition 3.14. Let T be stopping time of {Ft : t ≥ 0} on (Ω,F ,P). The
σ-algebra:

FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft,∀ t ≥ 0}

is called pre-T σ-algebra.

Interestingly, in this container, all random time moves to stopping time:

Proposition 3.10. Let T be a stopping time of {Ft : t ≥ 0}. S be a random time
such that S ≥ T . If S ∈ FT , then S is a stopping time.

Proof. Simply from definintion:

∀ t ≥ 0, {S ≤ t} = {S ≤ t} ∩ {T ≤ t} ∈ Ft

Then we could finish the proof.

For preparation of OST, we need to study the relation for multiple stopping time:

Proposition 3.11. Let S, T be stopping times of {Ft : t ≥ 0}, then:

(a) ∀ A ∈ FS, A ∩ {S ≤ T} ∈ FT .

(b) {T < S}, {T ≤ S}, {T = S} ∈ FT ∩ FS.

(c) FT∧S = FT ∩ FS.

Proof. Just iteratively use the defintion, and we omit the proof.

Then we give a tease of changing time with stopping times:
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Proposition 3.12. Let X = {Xt : t ≥ 0} be progressively measurable process
relative to {Ft : t ≥ 0}. Let T be finite stopping time of {Ft : t ≥ 0}. Then XT is
FT -measurable.

Proof. Leave as homework

Remark 3.9. 1. {XT∧t,t≥0}, called ”stopping process”, is progressively measurable rel-
ative to {Ft : t ≥ 0}.

2. If T be an optional time of {Ft : t ≥ 0} on (Ω,F ,P), FT+ = {A ∈ F : A ∩ {T ≤
t} ∈ Ft+,∀ t ≥ 0}, then FT+ is a σ−algebra.

For further process, we need to introduce more conditions:

Definition 3.15. A filtration {Ft : t ≥ 0} on (Ω,F ,P) is said to satisfy the usual
conditions if it is right-continuous and F0 contains all P−negligible-events in F ,
i.e. A ∈ F , s.t. P(A) = 0.

Lastly, under this conditions, we show its useness of stopping times:

Proposition 3.13. Let {Ft : t ≥ 0} filtrations satisfies the usual conditions. Let
X be an adapted process relative to {Ft : t ≥ 0} s.t: the sample path of X is RCLL.
Then there exists a sequence {Tn : n ∈ N} of stopping time of {Ft : t ≥ 0} s.t:

{(ω, t) ∈ Ω× R+ : Xt(ω) ̸= Xt−(ω)} ⊆
∞⋃
n=1

{(ω, t) ∈ Ω× (0,+∞) : Tn(ω) = t}

, i.e. {Tn : n ∈ N} exhausts the jumps of X.

Proof. The proof is omitted since its complexity.

3.4 Fundamental Theorem of Submartingale

Next, we move to most important tools of this course:

Definition 3.16. Let X = {Xt : t ≥ 0} be an adapted process of {Ft : t ≥ 0} on
(Ω,F ,P) such that: Xt ∈ L1(Ω,F ,P), ∀ t ≥ 0:

(a) If 0 ≤ s < t < +∞,E [Xt | Fs] ≥ Xs a.s. then X is a submartingale.
If in addition, X∞ ∈ L1(Ω,F ,P) and X∞ ∈ F∞ satisfying: E [X∞ | Fs] ≥
Xs a.s. ∀ s ≥ 0. Then {Xt : 0 ≤ t ≤ +∞} is a submartingale with last
element: X∞.

(b) If 0 ≤ s < t < +∞,E [Xt | Fs] ≤ Xs a.s. then X is a supermartingale.
If in addition, X∞ ∈ L1(Ω,F ,P) and X∞ ∈ F∞ satisfying: E [X∞ | Fs] ≤
Xs a.s. ∀ s ≥ 0. Then {Xt : 0 ≤ t ≤ +∞} is a supermartingale with last
element: X∞.

(c) If 0 ≤ s < t < +∞,E [Xt | Fs] = Xs a.s. then X is a martingale. If
in addition, X∞ ∈ L1(Ω,F ,P) and X∞ ∈ F∞ satisfying: E [X∞ | Fs] =
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Xs a.s. ∀ s ≥ 0. Then {Xt : 0 ≤ t ≤ +∞} is a martingale with last
element: X∞.

Remark 3.10. If {Xt, t ≥ 0} is a submartingale relative to {Ft : t ≥ 0} and {tn : n ∈ N} be
decreasing and non-negative numbers. Then {Xtn , n ∈ N} is a backward submartingale.

Similarly, we could put a convex increasing function to produce submartingale:

Proposition 3.14. Let X = {Xt : t ≥ 0} be a submartingale of {Ft : t ≥ 0}. Let
φ be a convex increasing function, such that φ(Xt) ∈ L1(Ω,F ,P), ∀ t ≥ 0. Then
φ(X) = {φ(Xt) : t ≥ 0} is a {Ft : t ≥ 0}-submartingale.

Proof. Simply proved using Jensen’s Inequality, then we omitted here.

Remark 3.11. If X is martingale, φ be a convex function, then φ(X) submartingale.

Then, we are going to introduce useful inequality for proving convergence:

Definition 3.17. Let X = {Xt : t ≥ 0} be a real-valued process, for a < b and
I ⊆ [0,+∞), we define:

τ1(ω) = inf{t ∈ I : Xt(ω) ≤ a}
σ1(ω) = inf{t ∈ I : t ≥ τ1(ω), Xt(ω) ≥ b}
τ2(ω) = inf{t ∈ I : t ≥ σ1(ω), Xt(ω) ≤ a}

· · · · · · · · ·

Since it may be empty set, we set inf{∅} = +∞. Next, we define the number of
up-crossings of interval [a, b] by sample path {Xt, t ≥ 0}:

UI ([a, b];X(ω)) = max{j ∈ N, σj(ω) < +∞}

Similarly, the number of down-crossings of interval [a, b] by sample path {Xt, t ≥ 0}:

DI ([a, b];X(ω)) = max{j ∈ N, τj(ω) < +∞}

t

Xt

a

b

τ1 σ1 τ2 σ2 τ3 σ3

Figure 2: Illustration of upcrossings of the interval [a, b] by a sample path {Xt : t ≥ 0}.
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Based on up/down-crossing, we could use to show convergence if we prepared toolkit:

Theorem 3.15. Let X = {Xt : t ≥ 0} be a supermartingale of {Ft : t ≥ 0}
whose sample path are right-continuous, let I ⊆ [0,+∞) be a compact interval and
a < b, λ > 0 be all real numbers:

(a) (First submartingale inequality): λP (supt∈I Xt ≥ λ) ≤ EX+
sup I .

(b) (Second submartingale inequality): λP (inft∈I Xt ≤ −λ) ≤ EX+
sup I − EXinf I .

(c) (Up-crossing inequality): (b− a)EUI ([a, b];X(ω)) ≤ EX+
sup I + |a|.

(d) (Doob’s maximal inequality): If Xt ≥ 0,∀ t ≥ 0, then ∀ p > 1,:

E

(
sup
t∈I

Xt

)p
≤
(

p

p− 1

)p
EXp

sup I

(e) Regularity of sample path of X:

(i) Almost every sample path of {Xt : t ≥ 0} is bounded on compact intervals
and admits left-hand limits everyone on (0,+∞).

(ii) If {Ft : t ≥ 0} satisfies the usual conditions, then jumps of X are
exhausted by a sequence of stopping times.

We postpone proving this theorem, and first introduce following two lemmas:

Lemma 3.16. If {Xn : 1 ≤ n ≤ N} is submartingale of {Fn : 1 ≤ n ≤ N}. Then
∀ λ > 0:

1. λP (max1≤n≤N Xn ≥ λ) ≤ EXN1{max1≤n≤N≥λ} ≤ EX+
N .

2. λP (min1≤n≤N Xn ≤ −λ) ≤ E(XN −X1)− EXN1{min1≤n≤N≤λ} ≤ E(X+
N −X1).

Proof. For this discrete version, we could treat with more confident:

1. Set α = min{nXn ≥ λ} with convention: min{∅} = N , is an optional r.v. since:

{α < k} =
k⋃
j=1

{Xj ≥ λ} ∈ Fk

Then by discrete version of OST, {Xα, XN} is a {Fα,FN}-submartingale. Notice:

∀ k < N, {α < k}
⋂{

max
1≤n≤N

Xn ≥ λ

}
= {α < k} ∈ Fk =⇒

{
max

1≤n≤N
Xn ≥ λ

}
∈ Fα

Therefore, we could complete the proof since:

λP

(
max

1≤n≤N
Xn ≥ λ

)
= Eλ1{max1≤n≤N Xn≥λ} ≤ EXα1{max1≤n≤N Xn≥λ}

≤ E
[
E (XN | Fα)1{max1≤n≤N Xn≥λ}

]
= EXN1{max1≤n≤N Xn≥λ}

For second inequlity, notice XN ≤ X+
N ,1A ≤ 1.
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2. Simlarly, we define β = min{n : Xn ≤ −λ} with convention: min{∅} = N , then:

EX1 ≤ E [E (Xβ | F1)] = EXβ

= EXβ1{β≤N−1} + EXβ1{β=N}∩{ min
1≤n≤N

Xn≤−λ} + EXβ1{β=N}∩{ min
1≤n≤N

Xn>−λ}

= EXβ1{β≤N−1} + EXN1{β=N}∩{ min
1≤n≤N

Xn≤−λ} + EXN1{ min
1≤n≤N

Xn>−λ}

≤ −λP(β ≤ N − 1)− λP
(
{β = n} ∩ { min

1≤n≤N
Xn ≤ −λ}

)
+ EXN1{ min

1≤n≤N
Xn>−λ}

= −P
(

min
1≤n≤N

Xn ≤ −λ
)
+ EXN1{min1≤n≤N Xn>−λ}

For this long derivation, we use three properties:

(a) On {β ≤ N − 1}, Xβ ≤ −λ.
(b) On {β = N} ∩ {min1≤n≤N Xn ≤ −λ}, XN ≤ −λ.
(c) {β ≤ N − 1} ∪ ({β = N} ∩ {min1≤n≤N Xn ≤ −λ}) = {min1≤n≤N Xn ≤ −λ}.

Finally, we rearrange the terms to see:

P

(
min

1≤n≤N
Xn ≤ −λ

)
≤ EXN1{min1≤n≤N Xn>−λ} − EX1

= EXN − EXN1{min1≤n≤N Xn≤−λ} − EX1

And then another lemma for proving continuous version of up-crossing inequality:

Lemma 3.17. If X = {Xn : 1 ≤ n ≤ N} is a submartingale relative to {Fn : 1 ≤
n ≤ N} and [a, b] is a compact interval, then:

(b− a)EUN ([a, b];X(ω)) ≤ E(XN − a)+ ≤ EX+
N + |a|

Proof. Firstly, we define: τ1 = min{1 ≤ n ≤ N : Xn ≤ a}, ∀ j ∈ N:

σj = min{1 ≤ n ≤ N : n ≥ τj, Xn ≥ b}, τj = min{1 ≤ n ≤ N : n ≥ σj−1, X ≤ a}

Then it is easy to see: 1 ≤ τ1 ≤ σ1 ≤ · · · ≤ N are all optional r.v.s. Therefore, by discrete
version of OST, {X1, Xτ1 , · · · , XN} is submartingale relative to {F1,Fτ1 , · · · }, notice:

∀ 1 ≤ j ≤M = UN([a, b];X(ω)), Xσj(ω)−Xτj(ω) ≥ b− a

Then we could finish our proof by:

(b− a)EUN([a, b];X) ≤ E
M∑
j=1

(Xσj −Xτj) = EXσM − EXτ1 + E
M−1∑
j=1

(Xσj −Xτj+1
)

≤ EXσn − EXτ1 ≤ E(XN − a)+ ≤ EX+
N + |a|

Lastly, we use the property of X is submartingale so does (X − a)+.

35



33
.

Then we start to prove 3.15 using above lemma:

Proof. Finally, we are ready to prove the big theorem 3.15. But only for (a) - (c):

(a) Choose {Fn} an increasing sequence of finite set, s.t: inf I, sup I ∈ FN ,∀ N , and:

F =
∞⋃
N=1

= {inf I, sup I}
⋃

(I ∩Q)

Then considering {Xt, t ∈ FN}, by lemma 3.16:

λP

(
max
t∈FN

Xt > λ

)
≤ EX+

sup I

Now, using the inclusion relation, i.e. FN ⊆ FN+1, of our chosing ”field”:{
max
t∈FN

Xt > λ

}
⊆
{

max
t∈FN+1

Xt > λ

}
=⇒

∞⋃
N=1

{
max
t∈FN

Xt > λ

}
=

{
max
t∈F

Xt > λ

}
Therefore, we extend to F, since it’s dense and the process is right-continuous:

λP

(
max
t∈F

Xt > λ

)
≤ EX+

sup I =⇒ λP

(
sup
t∈I

Xt > λ

)
≤ EX+

sup I

(b), (c) Same strategy as (a).

(d), (e) Leave for reader to verify.

Then we completed the proof.

Then firstly using above tools, we could ”fix” our process:

Proposition 3.18. Let X = {Xt : t ≥ 0} be a submartingale of {Ft : t ≥ 0} on
(Ω,F ,P), then:

(a) ∃ Ω∗ ∈ F with P(Ω∗) = 1 satifying, ∀ ω ∈ Ω∗:

Xt+(ω) = lim
s→t+
s∈Q

Xs(ω) ∃ ∀ t ≥ 0, Xt−(ω) = lim
s→t−
s∈Q

Xs(ω) ∃ ∀ t > 0

(b) The followings holds:

E(Xt+ | Ft) ≥ Xt, a.s., ∀t > 0

E(Xt | Ft−) ≥ Xt−, a.s., ∀t > 0

(c) {Xt, t ≥ 0} is a submartingale with P−almost all sample path being RCLL.

Proof. We only present a rough idea of proofs here:

(a) Using up-crossings inequality on [0, n] ∩Q.

(b) Using tn ∈ Q to approximate, then exchange the integral and limits.

(c) By (a) + (b).

Also, even though the process is not good enough, we could fix with modification:
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Theorem 3.19. Let {Ft : t ≥ 0} be a filtration satisfying usual conditions, let
X = {Xt : t ≥ 0} be a submartingale relative to {Ft : t ≥ 0}. Then X has a
modification that is right-continuous iff t 7→ EXt is right-continuous on (0,+∞).

Proof. The proof is intentionally omitted here.

The power of up-crossing inequality is to show the convergence:

Theorem 3.20. (Submartingale Convergence Theorem)
Let X = {Xt : t ≥ 0} be a right-continuous submartingale relative to {Ft : t ≥ 0}
such that: supt≥0 EX

+
t < +∞, then:

(a) lim
t→∞

Xt exists a.s.

(b) lim
t→∞

Xt ∈ L1(Ω,F ,P).

Proof. (a) But we have a powerful tool of 3.15’s (c), ∀ n ∈ N, ∀ a < b:

EU[0,n]([a, b];X) ≤ EX+
n + |a|
b− a

≤
supt≥0 EX

+
t + |a|

b− a

Here, set n→ +∞, and notice U[0,n] ↑, then by MCT, following holds:

EU[0,+∞)([a, b];X) ≤
supt≥0 EX

+
t + |a|

b− a
, ∀ a < b

Then observing below relations:{
ω : lim

t→∞
Xt(ω) ∄

}
=

{
ω : lim sup

t→∞
Xt(ω) > lim inf

t→∞
Xt(ω)

}
⊆
⋃
a<b
a,b∈Q

{
ω : U[0,+∞)([a, b];X(ω)) =∞

}
= ∅

Therefore, we complete the proof of existence since:

P
{
ω : lim

t→∞
Xt(ω) ∃

}
= P

{
ω : lim

t→∞
Xt(ω) ∄

}c
= 1

(b) For integrability, notice the relation: |Xt| = 2X+
t −Xt,∀ t,

E|Xt| = E(2X+
t −Xt) ≤ 2 sup

t≥0
EX+

t − EX0 < +∞

Then we simply set both sides limit:

E
∣∣∣ lim
t→∞

Xt

∣∣∣ = E lim inf
t→∞

|Xt| ≤ lim inf
t→∞

E|Xt| < +∞

Finally, we completed the proof.

Easily, we could see following from above theorem:
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Corollary 3.21. Let X = {Xt : t ≥ 0} be a right-continuous, non-negative super-
martingale relative to {Ft : t ≥ 0}, then X∞ = limt→∞Xt ∃, and {Xt : 0 ≤ t ≤
+∞} is a supermartingale.

Proof. Leave as homework.

And naturally, we want to restrict the last element, to be finite:

Definition 3.18. A right-continuous, non-negative supermartingale X = {Xt : t ≥
0} relative to {Ft : t ≥ 0} with limt→∞ EXt = 0, then X is called a potential.

Remark 3.12. A potential is a supermartingale with last element 0 a.s.

Under this, we could present equivalent conditions for convergence:

Proposition 3.22. Let X = {Xt : t ≥ 0} be a non-negative, right-continuous
submartingale relative to {Ft : t ≥ 0}, then the followings are equivalent:

(a) The family {Xt, t ≥ 0} of r.v.s are uniformly integrable.

(b) Xt converges in L
1 as t −→∞.

(c) Xt converges to X∞ ∈ L1(Ω,F ,P), and {Xt : 0 ≤ t ≤ +∞} is a submartin-
gale of {Ft : t ≥ 0}.

Proof. Leave as homework.

Remark 3.13. If Xn ≥ Y, a.s. ∀ t ≥ 0, then Xt − Y is non-negative.

Lastly, we come to the final boss, to replace time with stopping times:

Theorem 3.23. (Optional Sampling Theorem)
Let X = {Xt : 0 ≤ t ≤ +∞} be a right-continuous submartingale relative to
{Ft : t ≥ 0} with last element X∞. Let S ≤ T be two optinal times of {Ft : t ≥ 0}.
Then:

E [XT | FS+] ≥ XS, a.s.

Here if S is stopping time, then E [XT | FS] ≥ XS, a.s.

Proof. In order to use discrete OST, we discretize the time into, ∀ n ∈ N:

Sn =

{
+∞ , S = +∞
k
2n

, k−1
2n
≤ S < k

2n

, Tn =

{
+∞ , T = +∞
k
2n

, k−1
2n
≤ T < k

2n

Dominance relation still holds, i.e. Sn ≤ Tn, are stopping times of {Ft : t ≥ 0}, since:

{Sn ≤ t} =

{
{S < t} , t = k

2n
,∃ k{

S < k
2n

}
, k
2n
< t < k+1

2n
,∃ k

∈ Ft

Besides, by right continuity, we can easily recover the process, because:

lim
t→∞

XSn(ω) = XS(ω) and lim
t→∞

XTn(ω) = XT (ω)
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After discretization, {XSn , XTn} is submartingale of {FSn ,FTn}, then

∀ A ∈ FS+ =
∞⋂
n=1

FSn , EXTn1A = E [E (XTn | FSn)1A] ≥ EXSn1A

For taking limit, we first need to check its integrability, notice:

∀ n, Sn ≥ Sn+1, Tn ≥ Tn+1

It tells that {XSn : n ∈ N}, {XTn : n ∈ N} are backward submartingale of {FSn}, {FTn}:
EXSn ≥ EX0,EXTn ≥ X0 =⇒ {XSn}, {XTn} are u.i.

Then since {XSn}, {XTn} are u.i., it follows:

XSn

L1−−→ XS, XTn
L1−−→ XT =⇒ XS, XT ∈ L1(Ω,F ,P)

Moreover, ∀ A ∈ FS+, {XSn1A}, {XTn1A} are both u.i, then:

E [E (XT | FS+)1A] = EXT1A = lim
n→∞

EXTn1A ≥ lim
n→∞

EXSn1A = EXS1A

Just choose A = {E (XT | FS+) < XS}, and state P(A) = 0 to complete the proof.

Presenting lots of properties of submartingale, then one want to how it looks like:

Definition 3.19. Let {Ft : t ≥ 0} be a filtration on (Ω,F ,P). An adapted process,
A, is called increasing if:

(a) A0 = 0, a.s.

(b) For a.s− ω : t 7→ At is increasing and right-continuous.

(c) ∀ t ≥ 0,EAt < +∞.

An increasing process A is integrable, i.e. E limt→∞At < +∞.

Therefore, a submartingale can be decomposed into:

Theorem 3.24. (Doob-Meyer Decomposition)
Let {Ft : t ≥ 0} be a filtration satisfying the usual conditions. Let X = {Xt : t ≥ 0}
be a right-continuous submartingale relative to {Ft : t ≥ 0}, ∀ a ∈ R+,

φa = {T : T is a stopping time s.t. P(T ≤ a) = 1}

Assume that {XT : T ∈ φa} is u.i. ∀ a ∈ R+. Then ∀ t ≥ 0:

Xt =Mt +At

, where {Mt : t ≥ 0} is a right-continuous martingale relative to {Ft : t ≥ 0}, and
{At} is an increasing process.

Proof. The proof is omitted, we just present the result here.

Remark 3.14. 1. Set φ = {T : T is stopping time of {Ft : t ≥ 0} s.t. P(T < +∞) =
1} and {XT : T ∈ φ} is u.i., then {Mt, t ≥ 0} is u.i. and {At, t ≥ 0} is integrable.

2. The uniqueness of theorem holds if A is nature. It needs Lebesgue-stieltjes integral.
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3.5 Homeworks

The followings are exercises for this section:

Problem 3.1. On (Ω,F ,P), let X = {Xt : t ≥ 0} be a stochastic process that is
measurable and T is a random time. Prove that

(1) XT is a random variable if T is finite.

(2) All sets of the form {XT ∈ A} and {XT ∈ A} ∪ {T = ∞} with A ∈ B(Rd)
forms a σ-algebra.

Problem 3.2. Let {Ft : t ≥ 0} be a filtration and X be an adapted process relative
to {Ft : t ≥ 0}. Set T = inf{t ≥ 0 : Xt ∈ A}. Prove that

(1) If A is open and the sample paths of X are right-continuous, then T is an
optional time of {Ft : t ≥ 0}.

(2) If A is closed and the sample paths of X are continuous, then T is a stopping
time of {Ft : t ≥ 0}.

Problem 3.3. Let {Xt : t ≥ 0} be a progressively measurable process relative to
{Ft : t ≥ 0} and let T be a finite stopping time of {Ft : t ≥ 0}. Prove that

(1) XT is FT -measurable.

(2) Process {XT∧t : t ≥ 0} is progressively measurable relative to {Ft : t ≥ 0}.

Problem 3.4. Let T be an optional time of {Ft : t ≥ 0} on (Ω,F ,P).

(1) Prove that FT+ is a σ-algebra and FT+ = {A ∈ F : A∩{T < t} ∈ Ft,∀t ≥ 0}.

(2) Prove that if T is a stopping time, then FT ⊆ FT+.

Problem 3.5. Let {Xt : t ≥ 0} be a right-continuous, nonnegative supermartingale
relative to {Ft : t ≥ 0}. Prove that X∞ = limt→∞Xt exists almost surely and
{Xt : 0 ≤ t ≤ ∞} is a supermartingale relative to {Ft : 0 ≤ t ≤ ∞}.

Problem 3.6. Let {Xt, t ≥ 0} be a right-continuous, nonnegative submartingale
relative to {Ft : t ≥ 0}.

(1) The family {Xt : t ≥ 0} of r.v.s are uniformly integrable.

(2) Xt converges in L
1 as t→∞.

(3) Xt converges almost surely and the limit X∞ is integrable. Moreover, {Xt :
0 ≤ t ≤ ∞} is a submartingale relative to {Ft : 0 ≤ t ≤ ∞}.

Prove that (1), (2) and (3) are equivalent.
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Problem 3.7. Let {Xt : t ≥ 0} be a right-continuous supermartingale relative to
{Ft : t ≥ 0} and S ≤ T are stopping times of {Ft : t ≥ 0}. Prove that

(1) {XT∧t : t ≥ 0} is supermartingale of {Ft : t ≥ 0}.

(2) E[XT∧t | FS] ≤ XS∧t.

Problem 3.8. Let {Xt : t ≥ 0} be a right-continuous process such that Xt ∈
L1(Ω,F ,P) for ∀t ≥ 0. Prove that X is a submartingale relative to {Ft : t ≥ 0} if
and only if EXT ≥ EXS for all bounded stopping times S ≤ T of {Ft : t ≥ 0}.
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4 Markov Process

At the heart of many stochastic models lies a powerful simplifying principle: the future,
given the present, is independent of the past. This Markov property transforms complex
dependence into manageable, local evolution. In this chapter, we give this idea precise
measure-theoretic form, exploring its consequences through transition probabilities, evo-
lution operators, and the foundational Chapman-Kolmogorov equations. We distinguish
between the Markov property and its stronger counterpart adapted to stopping times,
and see how processes like Brownian motion naturally fit within this framework. Markov
theory provides a unifying lens, revealing a common structure behind many seemingly
disparate random phenomena.

4.1 Basic Definitions

Firstly, we present what is a Markov process:

Definition 4.1. Let {Ft : t ≥ 0} be a filtration on (Ω,F ,P), and X = {Xt : t ≥ 0}
be an adapted process relative to {Ft : t ≥ 0}. Then X is a Markov Process if,
∀ 0 ≤ s ≤ t,∀ bounded Borel-measurable function f , it follows:

E [f(Xt) | Fs] = E [f(Xt) | Xs] a.s.

The distribution of X0 is called the initial distribution of X.

Remark 4.1. 1. Markov property can be expressed as:

P(Xt ∈ A | Fs) = P(Xt ∈ A | Xs) a.s. ∀ 0 ≤ s ≤ t,∀ A ∈ B(Rd)

2. Choose an increasing sequence {tn}, {Xtn} is a discrete markov process/chain rela-
tive to {Ftn}.

3. Initial distribution µ of X, P(X0 ∈ A) = µ(A),∀ A ∈ B(Rd). Here µ = P ◦X−1

Besides, we also have strong markov process, it allows optinal times:

Definition 4.2. Let {Ft} be a filtration on (Ω,F ,P) and X = {Xt : t ≥ 0} be an
adapted and progressively measurable process relative to {Ft : t ≥ 0}. Then X is
a strong markov process if:
∀ optional T of {Ft : t ≥ 0},∀ t ≥ 0,∀ A ∈ B(Rd), it holds that:

P(XT+t ∈ A | FT+) = P(XT+t | XT ) a.s. on {T < +∞}

Remark 4.2. 1. We useBb(Rd) = bounded, Borel-measurable function on Rd =Banach
space (completed vector space with sup norm: ∥f∥ = supx |f(x)|)

2. For any markov process X, we associate a family of operator {Ts,t : 0 ≤ s ≤ t}:

∀ s ≤ t, Ts,t : Bb(Rd) 7→ the space of bounded functions on Rd

, where typically we will know it is: Ts,t : f 7→ E [f(Xt) | Xs = x]

3. A markov process is normal if ∀ 0 ≤ s ≤ t,∀ f ∈ Bb(Rd), Ts,t ◦ f ∈ Bb(Rd).
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4.2 Markov Evolution

Following from that, we can generalise to richer properties of operator:

Theorem 4.1. If X is normal markov process, then:

(a) Ts,t is a linear operator on Bb(Rd),∀ 0 ≤ s ≤ t.

(b) Ts,s is Id,∀ s ≥ 0. (Identity, Ts,sf = f)

(c) Tr,sTs,t = Tr,t,∀ 0 ≤ r ≤ s ≤ t.

(d) ∀ 0 ≤ s ≤ t,∀ f ≥ 0, f ∈ Bb(Rd), Ts,tf ≥ 0.

(e) ∀ 0 ≤ s ≤ t, ∥Ts,t∥ = sup
f∈Bb(Rd),f ̸=0

∥Ts,tf∥
∥f∥

≤ 1. (Contraction)

(f) If f(x) = 1, ∀ x ∈ Rd, Ts,tf = f .

Proof. First two of the properties are easy to check, we just left for reader.

(c) It suffices to prove: Tr,sTs,t ◦ f = Tr,t ◦ f, ∀ f ∈ Bb(Rd), starting from right we have:

Tr,tf(x) = E (f(Xt) | Xr = x) = E [E (f(Xt) | Fs) | Xr = x]

= E [E (f(Xt) | Xs) | Xr = x] = E (Ts,t | Xr = x) = Tr,sTs,tf(x)

(d) By the definition of conditional expectation, it is easy to check.

(e) Directly applying the definition, it suffices to show:

∥Ts,tf∥ = sup
x∈Rd

|Ts,tf(x)| = sup
x∈Rd

|E (f(Xt) | Xs = x)|

≤ sup
x∈Rd

E (|f(Xt)| | Xs = x) ≤ sup
x∈Rd

E (∥f∥ | Xs = x) = ∥f∥

(f) Straightforwardly, we verify by applying the definition:

Ts,tf = E (f(Xt) | Xs) = E (1 | Xs) = 1 = f

Remark 4.3. Any family operator satisfy these (a) - (f) is called markov evolution.

Then for continous case, we define the transition probability through evolution:

Definition 4.3. Let X be a markov process on (Ω,F ,P) relative to {Ft : t ≥ 0}
with markov evolution {Ts,t : 0 ≤ s ≤ t}. For 0 ≤ s ≤ t, we define the transition
probability Ps,t on Rd ⊗ B(Rd) by:

Ps,t(x,A) = Ts,t1A(x) = E [Xt ∈ A | Xs = x]
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Remark 4.4. 1. If ∀ x ∈ Rd,Ps,t(x, ·) admits a density function ps,t(x, ·), i.e.

Ps,t(x,A) =

∫
A

ps,t(x, y)dy,∀A ∈ B(Rd)

then the family of density function {ps,t : 0 ≤ s ≤ t} is called transition proba-
bility density function.

2. From above, we know: ∀ f ∈ B(Rd),∀ x ∈ Rd,∀ 0 ≤ s ≤ t,

Ts,tf(x) =

∫
Rd

f(y)Ps,t(x, dy) =

∫
Rd

f(y)ρs,t(x, y)dy

Now comes with most important and fundamental theorem:

Theorem 4.2. (Chapman-Kolmogorov equations)
If X be a normal markov process with transition probability density function {Ps,t :
0 ≤ s ≤ t}. Then ∀ 0 ≤ r ≤ s ≤ t,∀ x ∈ Rd,∀ A ∈ B(Rd):

Pr,t(x,A) =

∫
Rd

Ps,t(y, A)Pr,s(x, dy)

Proof. Since X is normal, then ∀A ∈ B(Rd),Ps,t(·, A) is measurabl, therefore,

Pr,t(x,A) = Tr,t1A(x) = Tr,sTs,t1A(x)

=

∫
Rd

Ts,t1A(y)Pr,s(x, dy)

=

∫
Rd

Ps,t(y, A)Pr,s(x, dy)

Then we completed the proof.

If the density exists, we could extend this into:

Corollary 4.3. Let X be a normal markov process with transition probability den-
sity function {ρs,t : 0 ≤ s ≤ t}, then ∀ 0 ≤ r ≤ s ≤ t,∀ x, z ∈ Rd:

ρr,t(x, z) =

∫
Rd

ρr,s(x, y)ρs,t(y, z)dy

Proof. Leave as homework.

4.3 Markov & Feller Semigroup

Lastly, we consider more general group that may be helpful when you read literature:

Theorem 4.4. Let {Ps,t : 0 ≤ s ≤ t} be a family of mappings from Rd ×B(Rd) 7→
[0, 1], satisfying: ∀ 0 ≤ s ≤ t:

(a) Ps,t(·, A) is measurable for ∀ A ∈ B(Rd).
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(b) Ps,t(x, ·) is a probability measure on (Rd,B(Rd)),∀ x ∈ Rd.

(c) Chapman-Kolmogorov equations are satisfied.

Let µ be fixed probability measure on (Rd,B(Rd)), then there exists a probability
space (Ω,F ,Pµ) with filtration {Ft : t ≥ 0} and a normal markov process X =
{Xt : t ≥ 0} on (Ω,F ,Pµ) relative to {Ft : t ≥ 0} such that:

(1) P(Xt ∈ A | Xs = x) = Ps,t(x,A), ∀ 0 ≤ s ≤ t, ∀ x ∈ Rd,∀A ∈ B(Rd).

(2) The initial distribution of X0 is µ.

Proof. The proof is omitted since its complexity, see details textbook, theorem 3.17.

To connect stationary properties, we define:

Definition 4.4. Let X be a markov process with markov evolution, {Ts,t : 0 ≤ s ≤
t}. Then X is said to be time-homogenous if:

Ts,t = T0,t−s,∀ 0 ≤ s ≤ t.

If X is not time-homogenous, X is called time-inhomogenous.

Remark 4.5. 1. Time-homogenous is equivalent to Ps,t = P0,t−s.

2. For time-homogenous markov process, we write Tt for T0,t, Pt for P0,t, ρt for ρ0,t.

3. For normal time-homogenous markov process, we have TsTt = Ts+t∀ t, s ≥ 0, T0 =
Id. Then we call this T , the markov transition semigroup.

Finally, we define what Feller process is:

Definition 4.5. Let C0(Rd) be the Banach space of continous function that
vanish at ∞, i.e. lim|x|→∞ f(x) = 0, equipped with the sup/max norm, i.e.
∥f∥ = supx∈Rd |f(x)|. If X is a time-homogenous markov process with markov
evolution operator {Tt : t ≥ 0} satifying:

(a) TtC0(Rd) ⊆ C0(Rd).

(b) limt→0+ ∥Ttf − f∥ = 0,∀ f ∈ C0(Rd).

Then X is called a Feller process, {Tt : t ≥ 0} is called a Feller semigroup.

Remark 4.6. 1. Some literature use: C0(Rd)←→ Cb(Rd).

2. If 4.5’s (a) replaced by: TtBb(Rd) ⊆ Bb(Rd), ∀ t ≥ 0, we call this process, strong
Feller process, and {Tt : t ≥ 0} the strong Feller semigroup.

3. For a family {Tt, t ≥ 0} of semigroup. If limt→0+
Ttf−f
t

exists, thenAf = limt→0+
Ttf−f
t

is called infinitistimal generator of {Tt, t ≥ 0}.
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4.4 Homework

Followings are homeworks of this chapter:

Problem 4.1. LetX be a normal Markov Process with transition density functions
{ρs,t : 0 ≤ s ≤ t}. Prove that:

ρr,t(x, z) =

∫
Rd

ρr,s(x, y)ρs,t(y, z)dy

for any 0 ≤ r ≤ s ≤ t and x, z ∈ Rd.
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5 Brownian Motion

Brownian motion stands as a cornerstone of stochastic processes, a singular object of
immense beauty and utility. It is the unique continuous process with stationary, inde-
pendent increments, a Gaussian martingale, and a fertile source of mathematical paradox.
In this chapter, we study its defining properties and then delve into the fascinating, often
pathological, nature of its paths: nowhere differentiable, yet Hölder continuous; of infinite
variation, yet with quadratic variation that unfolds deterministically. We will see how
Brownian motion connects scaling, time inversion, and a deep recurrence to the origin.

5.1 Define Brownian Motion

Firstly, we present the standard definition of brownian motion:

Definition 5.1. Let {Ft : t ≥ 0} be a filtration on (Ω,F ,P). Then the continous
stochastic process B = {Bt : t ≥ 0} adapted to {Ft : t ≥ 0} is called d−dimensional
Brownian Motion if:

(1) B0 = 0d, a.s.

(2) ∀ 0 ≤ s ≤ t,Bt − Bs ∼ N (0d, (t− s)Id) and independent of Fs

Remark 5.1. (a) If d = 1, we call B as a standard brownian motion.

(b) B = (B(1), · · · ,B(d)) is a standard d−dimensional brownian motion iff B(1), · · · ,B(d)

are independent and standard brownian motion.

A more simple way to transform independent to σ field:

Definition 5.2. X = {Xt : t ≥ 0} be a stochastic process such that:

∀ n ∈ N,∀ 0 = t0 < t1 < · · · , tn, the r.v.s Xt0 ⊥ Xt1 −Xt0 ⊥ · · · ⊥ Xtn −Xtn−1

then we say that X has independent increments.

Remark 5.2. The Standard Brownian Motion always have independent increments.

Then naturally, they are connected through:

Proposition 5.1. Let X be a stochastic process with independent increments, then
∀ 0 ≤ s ≤ t,Xt −Xs is independent of FXs .

Proof. Leave as a homework, and use Dynkin system for σ-algebra.

The following are equivalent definition, and we could verify they are equal with 5.1.

Definition 5.3. A continous process B = {Bt : t ≥ 0} adapted to filtration {Ft :
t ≥ 0} is a standard brownian motion if:

(a) B is a zero-mean/centered Gaussian process.

(b) EBtBs = min{s, t}. ∀ t, s ≥ 0
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Proof. Fill in a proof for equivalence.

This is easier to check at higher dimensions (in ”time”).

5.2 Properties of Sample Path

We leave the session of showing the existence of brownian motion, it can be constructed
via distribution or sample path.

Proposition 5.2. The sample paths of a standard brownian motion are locally
Hölder continous of order γ ∈ (0, 1

2
).

Proof. ∀ n ∈ N, by Kolmogorov’s continuity theorem, the order γ of Hölder-continous of
B satisfied γ ∈ (0, n−1

2n
), then we take its limits: limn→∞

n−1
2n

= 1
2
, we completed proof.

Remark 5.3. This gives us a hint that how should we interpret the stochastic integral,
like

∫
· dBt. Let’s say for Young integral,

∫
fdg is well defined only if α+β > 1, where

the α, β are the Hölder continity of f, g respectively. Then this explains why we cannot
use Young integral to study integral like:

∫
BtdBt.

Brownian motion is well studied since it has lots of interesting properties:

Proposition 5.3. A standard brownian motion B = {Bt : t ≥ 0} relative to
{Ft : t ≥ 0} is a martingale relative to {Ft : t ≥ 0}.

Proof. The adaptation and integrability is easy to show, we omitted here, then check:

Bt ∼ N (0, tId) =⇒ E (Bt − Bs | Fs) = E (Bt − Bs) = 0 =⇒ E (Bt | Fs) = Bs

, for ∀ 0 ≤ s < t.

And it also is a (strong) Markov process:

Proposition 5.4. A standard brownian motion relative to {Ft : t ≥ 0} is time-
homogeneous Markov Process. (Also a strong Markov Process)

Proof. Leave as a homework

Interestingly, the brownian motion can be constructed by optional times:

Theorem 5.5. Let S be a finite optional time of a filtration {Ft : t ≥ 0}, and
B = {Bt : t ≥ 0} be a d−dimensional brownian motion relative to {Ft : t ≥ 0}. Set
Wt = BS+t − BS, W = {Wt : t ≥ 0}, then W is a d−dimensional brownian motion
relative to {FWt : t ≥ 0} and is independent of FS+.

Proof. We only sketch the idea of the proof here.
By 5.3, it suffices to show it is jointly centered normal, then using characteristic function:

1. ∀ n ∈ N, 0 = t0 < t1 < · · · < tn, u1, · · · , un ∈ Rd, we can show by induction:

E

[
exp

(
i

n∑
k=1

uk(Wtk −Wtk−1
)

)
| Fs

]
=

n∏
k=1

exp

[
−1

2
(tk − tk−1)

2 ∥uk∥2
]
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2. From above, we use tower rules:

E

{
E

[
exp

(
i

n∑
k=1

uk(Wtk −Wtk−1
)

)
| Fs

]}

= E exp

(
i

n∑
k=1

uk(Wtk −Wtk−1
)

)
=

n∏
k=1

exp

[
−1

2
(tk − tk−1)

2 ∥uk∥2
]

Then by linear transformation, we can show:

(Wt1 ,Wt2 , · · · ,Wtn) ∼ N

0d,


. . .

tk − tk−1

. . .




3. Lastly, using independence of increments to show that Wtk −Wtk−1
⊥ FS+

The detailed proof, please refer to textbook.

Remark 5.4. If S is deterministic, then Wt ∼ N (0, t).

Following ways are useful when proving some theorem:

Proposition 5.6. Let W = {Wt : t ≥ 0} be a d−dimensional brownian motion
relative to {Ft : t ≥ 0}:

(a) Scaling Property: For c > 0, let Xt =
1√
c
Wct, then {Xt : t ≥ 0} is a

standard brownian motion relative to {Fct : t ≥ 0}.

(b) Time-Inversion Property: Let Yt = tW 1
t
,∀ t > 0 with Y0 = 0, a.s. Then

{Yt : t ≥ 0}is a standard brownian motion relative to {FYt : t ≥ 0}.

(c) Time-Reversal Property: For T > 0, let Zt = WT −WT−t,∀ 0 ≤ t ≤ T .
Then {Zt : 0 ≤ t ≤ T} is a standard brownian motion relative to {FZt : t ≥ 0}.

(d) Symmetry Property: −W = {−Wt : t ≥ 0} is a standard brownian motion
relative to {Ft : t ≥ 0}.

Proof. We omitted this proof since it is only tedious checking conditions.

Then we have below strange properties:

Proposition 5.7. With probability 1, a standard brownian motion changes sign
infinitely many times in any time interval [0, ε] with any ε > 0.

Proof. See textbook theorem 7.18

Consequently, we can move to origin:

Proposition 5.8. With probability 1, a standard brownian motion returns to origin
infinitely often.
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Proof. See textbook theorem 9.15, hint: using last proposition + Time-Inversion.

According to above, it seems like zeros of brownian motion should be large, but:

Theorem 5.9. Let B = {Bt : t ≥ 0} be a standard 1-dimensional brownian motion
on (Ω,F ,P) relative to {Ft : t ≥ 0}. For ω ∈ Ω, we define (zeros of B(ω)):

L(ω) = {t ≥ 0 : Bt(ω) = 0}

Then for P− a.s, ω ∈ Ω:

(a) L(ω) has zero Lebesgue measure.

(b) L(ω) is closed and unbounded.

(c) L(ω) has an accumulation point at t = 0.

(d) L(ω) has no isolated point in [0,+∞).

Proof. (a) Since B is adapted to {Ft : t ≥ 0} and has continous sample paths, then B
is progressively measurable, consquently, measurable. This tells us:

L = {(t, ω) ∈ [0,+∞)⊗ Ω : Bt(ω) = 0} ∈ B([0,+∞))⊗F

Then it is legal to consider:

Eλ(L(ω)) = E

∫ ∞

0

1L(ω)dt =

∫ ∞

0

E1L(ω)dt =

∫ ∞

0

P(Bt(ω) = 0)dt = 0

Therefore, combined with λ(L(ω)) ≥ 0, we have λ(L(ω)) = 0, a.s.

(b) Notice that L(ω) is pre-image of {0}, which is closed, then by continuity of B, we
have L(ω) is closed. And for unbounded property, it is easy to see from 5.8.

(c) We know from 5.7 that: ∃ decreasing {rn : n ∈ N}, {sn : n ∈ N}, s.t.

0 < rn+1 < sn+1 < rn < sn, and Brn(ω) > 0,Bsn(ω) < 0, lim
n→∞

rn = lim
n→∞

sn = 0

Then by continuity, ∃ tn ∈ (rn, sn), s.t.Btn(ω) = 0 =⇒ tn ∈ L(ω). It is easy to see
the accumulation point, since limn→∞ tn = 0.

(d) Firstly, we want to split the event, and show the latter’s measure is zero:

{ω ∈ Ω : L(ω) has isolated points on R+} ⊆
⋃
a,b∈Q
0<a<b

{ω ∈ Ω : ∃! s ∈ (a, b), s.t.Bs(ω) = 0}

Now, set βt = inf{s > t : Bs(ω) = 0}, t ≥ 0, by (c), β0 = 0, βt < +∞, a.s, notice:

{βt < r} = {∃ s ∈ (t, r), s.t. Bs = 0} ∈ Fr

Then βt is optional time of {Ft : t ≥ 0}, and Bβt(ω) = 0 a.s. More importantly:

ββt = inf{s > βt : Bs(ω) = 0} = βt + inf{s > 0 : Bβt+s(ω) = 0}
= βt + inf{s > 0 : Bβt+s − Bβt = 0} = βt
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Lastly, we are ready to check, ∀ a < b :

{ω ∈ Ω : ∃! s ∈ (a, b), s.t.Bs(ω) = 0} ⊆ {ω ∈ Ω : βa < b, ββa ≥ b} = ∅

No suprisingly, monotonicity is also too demanding for brownian motion:

Theorem 5.10. Let B = {Bt : t ≥ 0} ve a standard 1-dimensional brownian
motion on (Ω,F ,P) relative to filtration {Ft : t ≥ 0}. Then the sample path B·(ω)
is monotone in no interval a.s.

Proof. Firstly, we define following partition:

Fs,t = {ω ∈ Ω : B·(ω) is monotone on [s, t]}

Then it is clear that:

F = {ω ∈ Ω : B·(ω) is monotone in some interval} =
⋃

0≤s<t
s,t∈Q

Fs,t

Since we could split monotonicity into increasing and decreasing, and they are techinically
same, then we denote F+

s,t the increasing part, and only consider:

Ans,t =
n−1⋂
i=0

{ω ∈ Ω : Bs+ i+1
n

(t−s)(ω)− Bs+ i
n
(t−s)(ω) ≥ 0} ∈ F

Clearly, F+
s,t ⊆ Ans,t,∀ n ∈ N, then we completed the proof, since:

P(Ans,t) =
n−1∏
i=0

(
1

2

)
=

1

2n
=⇒ P

(
∞⋂
n=1

Ans,t

)
≤ 1

2N
,∀ N ∈ N =⇒ P

(
∞⋂
n=1

Ans,t

)
= 0

Remark 5.5. This is also the reason why
∫
fdg fails in lebesgue-stieltjes integral for

defining stochastic integral, since it asks g to be increase, but Bt is not monotonic at all.

Recall that: let f : [0,+∞) 7→ R, t ≥ 0 is a point of increase of f , if ∃ δ > 0, s.t. ∀ t−δ <
r < t < s < t+ δ, f(r) ≤ f(t) ≤ f(s). And clearly this one is loose than monotonicity.
Except above, the critical points is also ”non-exist”.

Theorem 5.11. With probability 1, the sample paths of B have no point of increase
or point of decrease.

Proof. We intentionally omitted the proof.

Based on above theorem, naturally we have:

Proposition 5.12. For standard 1-dimensional brownian motion, for P−almost
all sample paths, all local maximum/minimum is strict.
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Proof. As usual, we do a split of events:

{ω ∈ Ω : all local maximum of B·(ω) are strict}

⊇
⋂

0≤t1<t2<t3<t4
t1,t2,t3,t4∈Q

{ω ∈ Ω : max
t∈[t1,t2]

Bt(ω) ̸= max
t∈[t3,t4]

Bt(ω)}

Lastly, noticing following:

max
t∈[t1,t2]

Bt(ω)− max
t∈[t3,t4]

Bt(ω) =

max
t∈[t1,t2]

(Bt(ω)− Bt2(ω))− max
t∈[t3,t4]

(Bt(ω)− Bt3(ω)) + (Bt2(ω)− Bt3(ω))

And since each parts of them are independent, then we could easily check their probability
using density function. Therefore, we completed the proof.

Without suprising, since no monoticity, the set of local maximum should be large:

Corollary 5.13. Let B be a standard 1-dimensional brownian motion on (Ω,F ,P)
relative to {Ft : t ≥ 0}. Then the set of points of local maximum for sample path
B·(ω) is countable and dense in [0,+∞).

Proof. Since B·(ω) is continous and monetone on no interval.

Then last properties is nowhere differentiable even though it is smooth:

Theorem 5.14. Let B be a standard 1-dimensional brownian motion, then almost
surely ω,B·(ω) is nowhere differentiable.

Recall: f be a continous function:

D+f(t) = lim sup
h→0+

f(t+ h)− f(t)
h

D−f(t) = lim sup
h→0−

f(t+ h)− f(t)
h

D+f(t) = lim inf
h→0+

f(t+ h)− f(t)
h

D−f(t) = lim inf
h→0−

f(t+ h)− f(t)
h

These are Dini derivatives of f at t. And the typical derivatives are:

lim
h→0+

f(t+ h)− f(t)
h

= lim
h→0−

f(t+ h)− f(t)
h

The function f is said to be differentiable at t > 0 if it is differentiable from both the
right and the left and the four Dini derivatives agrees.

Proof. We will proof this by showing their upper-right/left derivatives are infinite, more
precisely, what we want is to prove: ∃ F ∈ F ,P(F ) = 1, s.t :

F ⊆ {ω ∈ Ω : ∀ t ≥ 0, either D+Bt(ω) = +∞ or D+Bt(ω) = −∞}

It is enough to consider the interval [0, 1]. For fixed j, k ≥ 1, we define:

Aj,k =
⋃
t∈[0,1]

⋂
h∈[0, 1

k
]

{ω ∈ Ω : |Bt+h(ω)− Bt(ω)| ≤ jh}
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And it is clear that, we need to find C ∈ F , s.t. Aj,k ⊆ C,P(C) = 0, since:

{ω ∈ Ω : ∃ t ∈ [0, 1],−∞ < D+Bt(ω) < D+Bt(ω) <∞} =
∞⋃
j=1

∞⋃
k=1

Aj,k

A crucial observation is that, for a fixed ω ∈ Aj,k:

∃ t ∈ [0, 1],∀ h ∈
[
0,

1

k

]
, |Bt+h(ω)− Bt(ω)| ≤ jh

Then by triangle inequality, following works:

∀ h1, h2 ∈
[
0,

1

k

]
, |Bt+h1(ω)− Bt+h2(ω)| ≤ j(h1 + h2)

Or more generally, ∀ n ≥ 4k,∃ i, s.t : i−1
n
≤ t ≤ i

n
, then for l = 1, 2, 3:∣∣∣B i+l

n
(ω)− B i+l−1

n

∣∣∣ ≤ j

((
i+ l

n
− t
)
+

(
i+ l − 1

n
− t
))
≤ j

(
2l + 1

n

)
Inspired by this control, notice that:

Aj,k ⊆
n⋃
j=1

3⋂
l=1

{
ω ∈ Ω :

∣∣∣B i+l
n
(ω)− B i+l−1

n

∣∣∣ ≤ j

(
2l + 1

n

)}
Using the distribution information, we easily show the latter’s probability is zero.

Simiar to above technicals, one can also show:

Theorem 5.15. The sample path B·(ω) of standard 1-dimensional brownian motion
B are nowhere Hölder-continous with order γ > 1

2
, a.s.

Proof. Leave as a homework

Remark 5.6. γ > 1
2
is the threshold of the order of Hölder continity.

Finally, we can also somehow measure the ”derivatives”:

Theorem 5.16. (Lévy modulus)
Let B be a 1-dimensional brownian motion on (Ω,F ,P) relative to {Ft : t ≥ 0}:

P

lim inf
δ→0+

1√
2δ ln

(
1
δ

) max
s,t∈[0,1]
|t−s|<δ

|Bt − Bs| = 1

 = 1

Proof. See the textbook Theorem 9.25

5.3 Homeworks

Followings are homeworks of this chapter:
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Problem 5.1. Let X be a stochastic process with independent increments. Then,
for ∀ 0 ≤ s < t, the increment Xt −Xs is independent of FXs .

Problem 5.2. (1) Prove that a standard Brownian motion is a time-
homogeneous Markov process.

(2) Determine the family of Markov evolution operators.

(3) Determine whether a standard brownian motion is a (strong) Feller process
of not.

(4) Determine the infinitestimal generator of standard brownian motion.

Problem 5.3. Let B be a brownian motion on (Ω,F ,P) relative to some filtration
{Ft : t ≥ 0}. Prove that there exists F ∈ F with P(F ) = 1, such that:

F ⊆ {ω ∈ Ω : ∀ t ≥ 0, either D−Bt(ω) = +∞ or D−Bt(ω) = −∞}

Problem 5.4. Prove that the sample paths of a standard 1-dimensional Brownian
motion are nowhere Hölder-continous with Hölder order γ > 1/2 a.s.
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6 Poisson & Lévy Process

The primary motivation for this chapter is to understand the behavior of Lévy processes
under a stochastic clock. By replacing deterministic time t with a random process Tt
(a subordinator), we can construct a wider class of processes that maintain the Lévy
structure while allowing for more complex path behaviors. Furthermore, we aim to extend
the simple Markov property to stopping times. Since Lévy processes are often used to
model first-passage times and ruin probabilities, the Strong Markov Property is not
merely a theoretical curiosity but a vital tool for analyzing the process at random horizons.

6.1 Infinitely Divisible Distribution

Firstly, we define what is a poisson r.v. by given the distribution function:

Definition 6.1. A r.v. X taking value in N∪{0} is a poisson r.v. with parameter
λ > 0, denoted X ∼ Poi(λ), if:

P(X = n) =
λn

n!
e−λ

The unity (sum to one) can be easily verified by tayor expansion of eλ at zero.

Remark 6.1. Simply calculation gives us:

1. EX = λ = Var(X)

2. ϕX(u) = EeiuX = exp(λ(eiu − 1))

Now, we introduce the most important concept of studying poisson r.v.:

Definition 6.2. A r.v. X is infinitely divisible if:

∀ n ∈ N,∃ i.i.d r.v.s Y
(n)
1 , Y

(n)
2 , · · · , Y (n)

n s.t. Y
(n)
1 + · · ·+ Y (n)

n
d.
= X

Remark 6.2. A probability measure µ on Rd, is infinitely divisible, if the r.v. X is infinitely
divisible with µX = µ, i.e. P(X ∈ A) = µ(A).

We will come back to this later, and present another concept about poisson r.v.:

Definition 6.3. Let {Zn : n ∈ N} be i.i.d r.v.s with values in Rd, let Y ∼ Poi(λ)
be independent of {Zn : n ∈ N}, then:

X =
Y∑
i=1

Zi = Z1 + · · ·+ ZY

is called the compounded Poisson r.v.s.

Remark 6.3. If the distribution of Z1 is µ, then we denoted as X ∼ Poi(λ, µ) and:

ϕX(u) = EeiuX = exp

(∫
Rd

λ
(
eiuy − 1

)
µ(dy)

)
In order to smoothly introduce Lévy-Khintchine theorem, we first look at:
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Definition 6.4. Let ν be a Borel measure on Rd/{0}.

(a) If
∫
Rd/{0}min(y2, 1)ν(dy) <∞, then we say ν is a Lévy measure.

(b) If ν is absolutely continous w.r.t Lebesgue measure, then the Radon-
Nikodym derivative, Pν =

dν
dx

is called Lévy density.

Remark 6.4. 1.
∫
Rd/{0}min(y2, 1)ν(dy) <∞⇔

∫
Rd/{0}

y2

1 + y2
ν(dy) <∞

2. A finite measure is always Lévy measure. (The reverse is generally not true)

Then from the definition, it should be clear that:

Proposition 6.1. Every Lévy measure on Rd/{0} is σ−finite.

Proof. Leave as a homework

And one of the most important theorem in this chapter, which depicts what an infinitely
divisible measure (hence r.v.) looks like, i.e. its general form of characteristic function:

Theorem 6.2. (Lévy-Khintchine)
A probability measure, µ, on Rd is infinitely divisible if: ∃ a ∈ Rd, A = Md(R)
satisfying A = A⊤, A ⪰ 0, and a Lévy measure ν on Rd/{0}, such that:

ϕµ(x) = exp

(
ia⊤x− 1

2
x⊤Ax+

∫
Rd/{0}

(
eix

⊤y − 1− ix⊤y1B1(0)(y)
)
ν(dy)

)
Conversely, ∀ ϕ(x) satisfy the Lévy-Khintchine formula is the characteristic func-
tion of an infinitely divisible probability measure.

Proof. Omitted.

Until now, one can see why we introduce compounded poisson process (compare).

Remark 6.5. 1. If Y ∼ N (a,A), then ϕY (x) = exp(ia⊤x− 1
2
x⊤Ax).

2. We call (a,A, ν) the characteristic of µ. (Since µ is uniquely determined by (a,A, ν))

Then since that exponent is too complex, we define following symbol:

Definition 6.5. We call the map η:

η(x) = ia⊤x− 1

2
x⊤Ax+

∫
Rd/{0}

(
eix

⊤y − 1− ix⊤y1B1(0)(y)
)
ν(dy)

a Lévy−symbol. (or Lévy exponent, charateristic exponent)

Remark 6.6. For inifinitely divisible probability measure µ, ϕµ(x) = eη(x).

Now, let’s see two basic proposition to get familiar with these notions:
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Proposition 6.3. The Lévy−symbol satisfies followings:

(a) ℜ(η(x)) ≤ 0.

(b) η is continous on Rd. It is uniformly continous on bounded sets.

(c) ∃ c > 0, s.t. |η(x)| ≤ c(1 + |x|2) ∀ x ∈ Rd.

Proof. (a) Simply, we pick out the real part of Lévy symbol:

ℜ(η(x)) = −1

2
x⊤Ax+

∫
Rd/{0}

[
cos(x⊤y)− 1

]
ν(dx) ≤ 0

, first terms is negative since A ⪰ 0, second is for cos(x) ≤ 1 ∀ x ∈ R.

(b) To see this, we need to investigate into difference, ∀ x1 ̸= x2 ∈ Rd:

η(x1)− η(x2) = ia⊤(x1 − x2)−
1

2
(x⊤1 Ax1 − x⊤2 Ax2)

+

∫
Rd/{0}

[
eix

⊤
1 y − eix⊤2 y − i(x⊤1 − x⊤2 )y1B1(0)(y)

]
ν(dy)

Then for the qudratic form, we could rewrite:

x⊤1 Ax1 − x⊤2 Ax2 = (x⊤1 − x⊤2 )Ax1 + x⊤1 A(x1 − x2) + (x⊤1 − x⊤2 )A(x1 − x2)

And also using bound for imaginary number on exponential to get:

|η(x1)− η(x2)| ≤ Cx1|x1 − x2|+O(|x1 − x2|2) =⇒ lim
x1→x2

η(x2) = η(x1)

, where Cx1 = |a|+ 2∥A∥+
∫
Rd/{0}

[
eix1yiy − iy1B1(0)

]
ν(dy).

(c) Similar to (b), one can show:

|η(x)| ≤ |a| · |x|+ ∥A∥ · |x|2 + C + C ′|x| = O(1 + x2)

Therefore, we completed the proof.

The following theorem explains the connection between compounded poisson r.v. and
infinitely divisible r.v., also serves as conclusion of this subchapter.

Theorem 6.4. Any infinitely divisible probability measure µ on Rd is the weak
limit of a sqeuence of compounded poisson distributions.

Proof. Let ϕ be characteristic function of µ, then since it is infinitely divisible, there
exists µn such that: µ = µn ∗ · · · ∗ µn, and its ch.f is ϕ1/n(x), now write:

ϕn(x) = exp
[
n
(
ϕ1/n(x)− 1

)]
= exp

(
n

∫
Rd

(eix
⊤y − 1)µn(dy)

)
, which is exactly the compound poisson r.v.’s ch.f, moreover, one can chcek:

ϕn(x) = exp
[
n
(
e

1
n
log(ϕ(x)) − 1

)]
= exp

{
n

[
1

n
log(ϕ(x)) + o

(
1

n

)]}
−→ ϕ(x)

as n→∞, then the result follows by Lévy continuity theorem.
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6.2 Lévy Process

Now, we come to a new subchapter, here we will firstly introduce Lévy process.

Definition 6.6. A stochastic process X = {Xt : t ≥ 0} is Lévy process if:

(a) X0 = 0 a.s.

(b) X has independent and stationary increments.

(c) X is stochastic continous. (continous in probability)

Note under (2) the stochasticall continuous is equivalent to stochastic continuous at t = 0,
and another property is that the modification of Lévy process is still a Lévy process.

Remark 6.7. 1. Continous: ∀ t > 0, lims→tXs = Xt.

2. Stochastic Continous: ∀ ε > 0, lims→t P (|Xs −Xt| > ε) = 0,∀ t
Clearly, from the definition, we have below trivial example:

Example 6.1. A standard brownian motion is a Lévy process.

And then comes with poisson process:

Definition 6.7. The poisson process with intensity λ > 0, i.e.

N = {Nt : t ≥ 0} with values in natural number satisfy Nt ∼ Poi(λt)

, is a Lévy process.

Remark 6.8. 1. The sample paths of poisson process are discontinous.

2. Set Ñt = Nt−λt, Ñ = {Ñt, t ≥ 0} is called compensated poisson process, EÑt = 0.

Besides, the interesting compounded poisson process:

Definition 6.8. {Zn : n ∈ N} is a sequence of i.i.d r.v.s with values in Rd, distri-
bution µ. Let N = {Nt, t ≥ 0} be a poisson process with intensity λ > 0, such that
N is independent of {Zn : n ∈ N}. Let Yt =

∑Nt

i=1 Zi = Z1 + · · ·+ZNt ,∀ t ≥ 0 with
convention if Nt = 0, Yt = 0. Then Yt is called compounded poisson process.

Remark 6.9. With same convention, we denoted as ∀ t ≥ 0, Yt ∼ Poi(λt, µ).

This chapter mainly aim to study Lévy process, sicne lots of other processes are just spe-
cial cases of Lévy process. Then following proposition presents the relationship between
Lévy and compounded poisson process:

Proposition 6.5. The compounded poisson process, Y , is Lévy process.
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Proof. First two conditions are easy to check, we mainly focus on stochastic continuous:

P (|Yt| > ε) =
∞∑
n=0

P (|Yt| > ε,Nt = n) =
∞∑
n=0

P (|Z1 + · · ·+ Zn| > ε)P(Nt = n)

=
∞∑
n=0

P(|Z1 + · · ·+ Zn| > ε)
(λt)n

n!
e−λt

DCT−−→ 0

, as t→ 0, then we completed the proof.

Remark 6.10. 1. For compound poisson process’s sample path are discontinous.

2. A compound poisson proces is a poisson process iff d = 1, Zn = 1 a.s.∀ n.
And by first subchapter’s preparation, we could state following proposition:

Proposition 6.6. Let X = {Xt : t ≥ 0} be Lévy process, then ∀ t ≥ 0, Xt is
infinitely divisible.

Proof. ∀ n ∈ N, we could split into: Y
(n)
k = X kt

n
− X (k−1)t

n

, then by independent and

stationary increment, we know that, Y
(n)
1 , · · · , Y (n)

n are i.i.d. and Xt =
∑n

k=1 Y
(n)
k .

Lemma 6.7. If X = {Xt : t ≥ 0} is stochastically continous, then ∀ u ∈ Rd, t 7→
ϕXt(u) is uniformly continous.

Proof. The general idea is to control them by parts, firstly using the fact, u 7→ eiu is
continuous, then ∀ ε > 0,∃ δ′ > 0, s.t:

∀ |y − 0| < δ′, |eiu⊤y − eiu⊤0| = |eiu⊤y − 1| < ε

Next, using the stochastic continuity, we could control, ∀ ε > 0,∃ δ > 0, s.t:

∀ 0 < |t− s| < δ, P(|Xt −Xs| ≥ δ′) < ε

Therefore, we could use these two by carefully our event, ∀ 0 < |t− s| < δ:

|ϕXt(u)− ϕXs(u)| ≤ E
∣∣∣eiu⊤Xt − eiu⊤Xs

∣∣∣ = E
∣∣∣eiu⊤(Xt−Xs) − 1

∣∣∣
= E

∣∣∣eiu⊤(Xt−Xs) − 1
∣∣∣1{|Xt−Xs|≥δ′} + E

∣∣∣eiu⊤(Xt−Xs) − 1
∣∣∣1{|Xt−Xs|<δ′}

≤ 2P(|Xt −Xs| ≥ δ′) + sup
|y|<δ′

∣∣∣eiu⊤y − 1
∣∣∣ < 3ε

This completed the proof, since it is independent with interval we chose.

Remark 6.11. For any bounded set A, the continuity is also uniformly continuous on A.

Theorem 6.8. If X is a Lévy process, η(a) is the Lévy symbol of X1, then ∀ u ∈
Rd, t ≥ 0, ϕXt(u) = etη(u).
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Proof. Since there is no distribution information, then considering to establish equation:

ϕXt+s(u) = Eeiu
⊤Xt+s = Eeiu

⊤(Xt+s−Xt)Eeiu
⊤Xt = Eeiu

⊤XtEeiu
⊤Xs = ϕXt(u)ϕXs(u)

, ∀ t, s ≥ 0. Therefore, set f(t) = ϕXt(u), above gives: f(t+ s) = f(t)f(s). Notice:

∀ n ∈ N, f(n) = f(n− 1)f(1) = f(n− 2)f 2(1) = · · · = fn(1)

This also can be generalised to rational number since:

∀ n ∈ N, f(nt) = fn(t) =⇒ ∀ p, q ∈ Z/{0}, f(p/q) = f 1/q(p) = fp/q(1)

Then we land in ∀ x ∈ Q, f(x) = fx(1). Now, ∀ x /∈ Q, we use rational number to
approximate, then it could be generalise to real number, so: ϕXt(u) = ϕtX1

(u) = etη(u).

Corollary 6.9. ( Lévy-Khintchine formula for Lévy process)
Let X be a Lévy process, and (a,A, ν) be the characteristic of X1, then:

ϕXt(u) = exp

{
t

[
ia⊤x− 1

2
x⊤Ax+

∫
Rd/{0}

(
eix

⊤y − 1− ix⊤y1B1(0)(y)
)
ν(dy)

]}

Proof. The proof is directly followed by 6.2.

Remark 6.12. We define Lévy symbol and characteristic of X as the Lévy symbol and
characteristic of X1.

Then following we present some properties about Lévy process.

Proposition 6.10. Let X be a Lévy process with characteristic (a,A, ν), then
−X = {−Xt, t ≥ 0} is also a Lévy process with characteristic (−a,A, ν̃), where
ν̃ is the Lévy measure satisfy ν̃(A) = ν(A),∀ A ∈ B(Rd).

Proof. Leave as a homework

A natural question is that the limit of a sequence of Lévy processes is Lévy or not.

Theorem 6.11. Let X(n) be Lévy process, ∀ n ∈ N. Let X be a process. If:

(a) ∀ t ≥ 0, X
(n)
t converges in probability to Xt.

(b) ∀ ε > 0, lim
n→∞

lim sup
t→0+

P
(
|X(n)

t −Xt| > ε
)
= 0

, then X is a Lévy process.

Proof. We just check whether it satisfies the three properties:

(a) Since ∀ n ∈ N,X(n)
0 = 0 a.s., we have X0 = 0 a.s.
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(b) From first assumption, we have, ∀ 0 ≤ t1 < · · · < tk, then ∀ 1 ≤ j ≤ k − 1:

X
(n)
tj+1
−X(n)

tj

p.−−→ Xtj+1
−Xtj , as n→∞

But this is not enough, then notice ∃ subsequence {nr : r ∈ N} s.t:

X
(nr)
tj+1
−X(nr)

tj

a.s.−−→ Xtj+1
−Xtj , as nr →∞

Now, since limiting process has independent increment, so as the X has. Next:

Eeiu
⊤(Xt−Xs) = lim

nr→∞
Eeiu

⊤(X
(nr)
t −X(nr)

s ) = lim
nr→∞

Eeiu
⊤Xnr

t−s = Eeiu
⊤Xt−s

This exactly finishes the stationary independence.

(c) Similarly, we just splite the event, ∀ ε > 0,∀ t ≥ 0:

P(|Xt| > ε) = P(|Xt −X(n)
t +X

(n)
t | > ε) ≤ P(|Xt −X(n)

t |+ |X
(n)
t | > ε)

≤ P(|Xt −X(n)
t | > ε/2) + P(|X(n)

t | > ε/2)

Using condition with stochastic continuity for limiting process to complete.

As showed, it satisfies the properties then we completed the proof.

From above, we could see the importance of stochastic continuity, then following is an-
other to depict this property, in the sense of probability measure.

Proposition 6.12. If X = {Xt : t ≥ 0} is a stochastic process, such that X0 =
0 a.s. Let Pt be the distribution of Xt. Then X is stochastically continous at t = 0
iff Pt is weakly convergent to δ0 as t→ 0+.

Proof. To recall, if we want to show it is weakly convergent, it suffice to show:

∀ f ∈ CB(Rd), lim
t→0+

∫
Rd

f(y)P(dy) =

∫
Rd

f(y)δ0(dy) = f(0)

(1) Let’s first see forward direction, we control by (i) continuity of f :

∀ ε > 0, ∃ δ > 0, s.t. ∀ |x| < δ, |f(x)− f(0)| < ε

(ii) the stochastic continuity, ∃ δ′ > 0, s.t. ∀t ∈ (0, δ′):∫
Bδ(0)c

Pt(dx) = P(|Xt| > δ) < ε

Now, same trick as before, we splite the event using this δ distance, ∀ t ∈ (0, δ′):∣∣∣∣∫
Rd

f(x)Pt(dx)− f(0)
∣∣∣∣ = ∣∣∣∣∫

Rd

(f(x)− f(0))Pt(dx)
∣∣∣∣ ≤ ∫

Rd

|f(x)− f(0)|Pt(dx)

=

∫
Bδ(0)

|f(x)− f(0)|Pt(dx) +
∫
Bδ(0)c

|f(x)− f(0)|Pt(dx)

≤ ε

∫
Bδ(0)

Pt(dx) + 2∥f∥L∞

∫
Bδ(0)c

Pt(dx) ≤ (1 + 2∥f∥L∞)ε

Since we strict to bounded space, then this is control by ε.
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(2) ∀ ε > 0, r > 0, we choose g supported on Br(0) s.t.0 ≤ g ≤ 1, g(0) > 1− ε, then:

∃ δ > 0, s.t.

∣∣∣∣∫
Rd

g(x)Pt(dx)− g(0)
∣∣∣∣ < ε,∀ t ∈ (0, δ)

Next, we could investigate, ∀ t ∈ (0, δ):

P(|Xt| > r) = 1−
∫
Br(0)

Pt(dx) ≤ 1−
∫
Br(0)

g(x)Pt(dx) ≤ 1− (g(0)− ε) < 2ε

Then we completed the proof from both directions.

Remark 6.13. Stochastically continous can be described by measure.

Then we naturally talk about some interesting stuff about measure.

Definition 6.9. A family of probability measure Pt, t ≥ 0 with P0 = δ0 is called
convolution semigroup if Ps+t = Ps ∗ Pt ∀ s, t ≥ 0.

The semigroup is weakly continous if Pt is weakly convergent to δ0 as t→ 0+.

Remark 6.14. A convolution semigroup {Pt, t ≥ 0} is weakly continous iff

lim
s→t+

∫
Rd

f(y)Ps(dy) =

∫
Rd

f(y)Pt(dy),∀ f ∈ CB(Rd), ∀ t ≥ 0.

And the follwong corollary states out the connection with Lévy process:

Corollary 6.13. If X = {Xt, t ≥ 0} is a Lévy process, Pt is the distribution of
Xt,∀ t ≥ 0, then {Pt, t ≥ 0} is weakly continous convolution semigroup.

Proof. Here we only present rough idea of proof:

(1) Stationary of Increment =⇒ Pt is the distribution of increment.

(2) Independence of Increment =⇒ Convolution.

(3) Stochastic Continuity =⇒ Weak continuity of Pt.

We only present the most important three properties’ justification.

Then naturally, we want to ask how to reverse this process?

Theorem 6.14. If {Pt, t ≥ 0} is a weakly continous convolution semigroup of
probability measures, then there exists a Lévy process X = {Xt, t ≥ 0} such that Pt
is the distribution of Xt,∀ t ≥ 0.

Proof. We only give the rough idea of proof:

(1) Set Ω = {ω : R+ 7→ Rd with ω(0) = 0}. We consider sylinder sets of the form:

IA1,··· ,An
t1,··· ,tn = {ω ∈ Ω : w(t1) ∈ A1, · · · , ω(tn) ∈ An}

, ∀ A1, · · · , An ∈ B(Rd), 0 ≤ t1 < · · · < tn,∀ n ∈ N , and set F the σ-algebra
generated by such cylinder sets. We define P on F by:

P
(
IA1,··· ,An
t1,··· ,tn

)
=

∫
(Rd)n

1A1(y1) · · · 1An(y1 + . . . yn)Pt1(dy1) · · ·Ptn−tn−1(dyn)
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(2) We define Xt(Ω) = ω(t) for t ≥ 0, ω ∈ Ω. Then the distribution of Xt is Pt.
Moreover, X0 = 0 and Xt is stochastically continuous by 6.12. The stationary and
independence of the increments are deduced via charateristic function.

And the details of the proof is left for interested readers.

Remark 6.15. The process X above constructed is called the cannonical Lévy process.

Reversely, one can recover Lévy by an infinitely divisible probability measure.

Corollary 6.15. If µ is an infinitely divisible probability measure on Rd with Lévy
symbol η, then there exists a Lévy process X such that the distribution of X1 is µ.

Proof. Firstly, from 6.2, there exists a triplet (b, A, ν) such that: ϕµ(u) = eη(u), besides
let ϕµ,t(u) = etη(u) be the characteristic function of an infinitely divisible probability
measure of Pt. Then we only need to check it is weakly convergent to δ0, to see this:
ϕµ,0(u) = 1 = ϕδ0(u), then using convolution property, we completed the continuity.

6.3 Subordinator

Next, we introduce a group of special process under Lévy.

Definition 6.10. A subordinator is an 1-dimensional Lévy process and is increasing
a.s.

Following theorem depicts subordinator in ”Lévy” symbol:

Theorem 6.16. If T is a subordinator, then its Lévy symbol has the form:

ηT (u) = ibu+

∫ ∞

0

(
eiuy − 1

)
ν(dy)

, where b ≥ 0, and ν is Lévy measure satisfying:

(a) ν supported on [0,∞).

(b)
∫∞
0
y ∧ 1ν(dy) <∞.

Proof. The proof is omitted, here we just present this theorem.

Remark 6.16. 1. The pair (b, ν) is called the characteristic of T .

2. The Laplace transform of T is Ee−uTt = e−tψ(u), where ψ(u) = −ηT (iu).
Even though it seems like a new concepts, the following examples are all subordinator:

Example 6.2. The following two examples’ verification is left as homework.

1. A poisson process is always a subordinator.

2. A compound poisson process is a subordinator iff Zn ≥ 0 ∀ n ∈ N a.s.

And we have similar result in recovering subordinator from probability measure:
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Theorem 6.17. If µ is an infinitely divisible probability measure on (R+,B(R+)),
then there exists a subordinator T = {Tt : t ≥ 0}, s.t. µ is the distribution of T1.

Proof. From 6.15, there exists a Lévy process, X, s.t. µ is the distribution of X1. It
remains to show it is increasing a.s., key is the measure is on R+, then:

X1 ≥ 0 a.s.
inf div
=⇒ X1/n ≥ 0 a.s. ∀ n ∈ N =⇒ Xt ≥ 0 a.s. ∀ t ∈ Q

By stochastic continuity, we have convergence in probability, then using subsequence that
is convergence almost surely, therefore, to complete the irrational points on real line.

The aim to introduce subordinator is its increasing, then its kind of ”time”:

Theorem 6.18. (Time Changing)
Let X be a Lévy process, T be a subordinator on (Ω,F ,P) such that X and T are
independent. Set Zt = XTt. Then process Z = {Zt : t ≥ 0} is a Lévy process.

Proof. Similarly, just need to check conditions one by one:

(1) Z0 = XT0 = X0 = 0 a.s., as X and T are Lévy processes.

(2) Indepent increment uses characteristic function, we omit here, then for proving
stationary increment of Z, considering ∀ 0 ≤ t1 < t2,∀A ∈ B(Rd), we have:

P(Zt2 − Zt1 ∈ A) = P(XTt2
−XTt1

∈ A) = E1{XTt2
−XTt1

∈A}

= E
{
E
[
1{XTt2

−XTt1
∈A} | Tt1 , Tt2

]}
= E

{
E
[
1{XTt2

−Tt1
∈A} | Tt1 , Tt2

]}
= E1{XTt2

−Tt1
∈A} = E

{
E
[
1{XTt2

−Tt1
∈A} | X

]}
= E

{
E
[
1{XTt2−t1

∈A} | X
]}

= E1{XTt2−t1
∈A} = P(Zt2−t1 ∈ A)

, where we use independence of X and T , and stationary of X.

(3) By the stochastical continuity of X and T , ∀ ϵ > 0, η > 0, ∃ δ > 0, s.t. ∀ h ∈ (0, δ),
it holds that P(|Xh| > η) < ϵ, and ∃ δ′ > 0, s.t. ∀ h′ ∈ (0, δ′), it holds that
P(Th′ ≥ δ) < ϵ. Then ∀h ∈ (0,min{δ, δ′}):

P(|Zh| > η) = P(|XTh| > η) = P(|XTh | > η, Th ≥ δ) + P(|XTh| > η, Th < δ)

≤ P(Th ≥ δ) + sup
u∈[0,δ)

P(|Xu| > η) < 2ϵ.

Therefore, we completed the proof.

Corollary 6.19. ∀ u ∈ Rd, ηZ(u) = −ψT (−ηX(u)).

Proof. By independence of X and T , we know:

etηZ(u) = Eeiu
⊤XTt = E

[
E
(
eiu

⊤XTt | Tt
)]

= EeTtηX(u) = e−tψ(−ηX(u))

Then we finished the proof.

6.4 Recurrence and Transience

Finishing the ordinator, let’s introduce another concepts, recurrent and transient:
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Definition 6.11. A Lévy process X = {Xt : t ≥ 0} is:

(a) recurrent (at the origin) if lim inf
t→∞

|Xt| = 0 a.s.

(b) transient if lim
t→∞
|Xt| =∞ a.s.

From definition, one can see it is not easy to show whether a Lévy process is recurrent
or transient, then the following criterion helps us to understand the concept:

Theorem 6.20. A Lévy process X = {Xt : t ≥ 0} is recurrent iff:

(a) For a > 0, limq→0+
∫
Ba(0)

ℜ
(

1

q − η(u)

)
du =∞. (Chung-Fuchs criterion)

(b) ∀ a > 0,
∫
Ba(0)

ℜ
(

1

−η(u)

)
du =∞.(Spitzer criterion)

Proof. The proof is omitted since its complexity.

Theorem 6.21. On (Ω,F ,P), X = {Xt : t ≥ 0} is a Lévy process with Lévy
symbol η. ∀ u ∈ Rd, we set:

Mu
t = exp

(
iu⊤Xt − tη(u)

)
,∀ t ≥ 0

Fix u ∈ Rd, M = {Mt : t ≥ 0} is a complex martingale with respect to FX .

Proof. (1) Integrability: E|Mu
t | = Ee−tℜ(η(u)) <∞, ∀ u ∈ Rd,∀ t ≥ 0.

(2) ∀ u ∈ Rd, ∀ 0 ≤ s ≤ t, notice we could rewrite:

Mu
t =Mu

s · exp
(
iu⊤(Xt −Xs)− (t− s)η(u)

)
Then, by independence and stationary increment of X, we have:

E
(
Mu

t | FXs
)
=Mu

s · E
[
exp

(
iu⊤(Xt −Xs)− (t− s)η(u)

)
| FXs

]
=Mu

s · E exp(iu⊤Xt−s − (t− s)η(u)) =Mu
s

Then we completed the proof.

Theorem 6.22. On (Ω,F ,P), every Lévy process, X = {Xt : t ≥ 0} has a modifi-
cation, Y , that is RCLL, and also a Lévy process.

Proof. From 6.21, ∀ u ∈ Rd,Mu is a martingale so ∀ t ≥ 0:

Mu
t− = lim

s→t−
s∈Q

Mu
s and Mu

t+ = lim
s→t+
s∈Q

Mu
s ∃ a.s.

Now denote Ω′
u = {ω : at least one of the limits fail to exist}, then P(Ω′

u) = 0, also:

Ω′ :=
⋃
u∈Qd

Ω′
u =⇒ P(Ω′) = 0
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Then we are going to work on Ω′, ∀ ω ∈ Ω′c,∀ t ≥ 0, choose increasing sequence {sn : n ∈
N} ⊆ Q+, such that, limn→∞ sn = t.We want to show that the limit is unique on this set
(since by construction is already exist), then assume {Xsn(ω) : n ∈ N} has accumulation
points X(1) := limi→∞Xsni

and X(2) := limj→∞Xsnj
. Then the existence of limits give:

lim
s→t

Mu
s ∃ =⇒ lim

n→∞
exp(iu⊤Xsn) ∃ =⇒ 1

2π
u⊤(X(1) −X(2)) ∈ N, ∀ u ∈ Qd a.s.

This forces X(1) = X(2) a.s. Then X has left (right) limit on Q+. Now define:

Yt(ω) =

lims→t+
s∈Q+

Xt(ω) , ω /∈ Ω′

0 , ω ∈ Ω′

One could verify Y is a mofication of X and also a RCLL Lévy process.

Following theorem shows a new way to construct Lévy process:

Theorem 6.23. On (Ω,F ,P), X = {Xt : t ≥ 0} be a RCLL Lévy process adapted
to a filtration {Ft : t ≥ 0}. Let T be a bounded stopping time relative to {Ft : t ≥ 0}.
Set: X(T ) = XT+t −XT ,∀ T ≥ 0, then:

(a) X(T ) is a Lévy process and is independent of FT .

(b) ∀ t ≥ 0, X
(T )
t

d.
= Xt pointwisely.

(c) X(T ) is RCLL and is adapted to {FT+t : t ≥ 0}.

Omitted since just similar to before.

Proof. (a) For ∀A ∈ FT , ∀ uj ∈ Rd with 1 ≤ j ≤ n, ∀0 = t0 ≤ t1 < · · · < tn, we have:

E

[
1A exp

(
i

n∑
j=1

u⊤j (XT+tj −XT+tj−1
)

)]
= E

[
1A

n∏
j=1

M
uj
T+tj

M
uj
T+tj−1

·
n∏
j=1

ϕtj−tj−1
(uj)

]

, where ϕt(u) = Eeiu
⊤Xt and Mu

t = exp(iu⊤Xt − tη(u)). Using:

E

[
1A
Mu

T+b

Mu
T+a

]
= E

[
1A

1

Mu
T+a

E
(
Mu

T+b | FT+a
)]

= P(A)

, to take conditional expectation w.r.t. FT+tn−1 ,FT+tn−2 , . . . ,FT+t1 to obtain:

E

[
1A exp

(
i

n∑
j=1

u⊤j (XT+tj −XT+tj−1
)

)]
= P(A) ·

n∏
j=1

ϕtj−tj−1
(uj)

Then, take A = Ω, n = 1 to get Eeiu
⊤(XT+t−XT ) = Eeiu

⊤Xt .

(b) We have XT
0 = 0. Take A = Ω to obtain the stationary and independence of

increments. The stochastically continuity follows directly from the stochastically
continuity of X. By change of variable vn = un, vk = uk − uk+1, 1 ≤ k ≤ n− 1:

E

[
1A exp

(
i

n∑
j=1

v⊤j X
T
tj

)]
= P(A)E

[
exp

(
i

n∑
j=1

v⊤j X
T
tj

)]
= E

{
1AE

[
exp

(
i

n∑
j=1

v⊤j X
T
tj

)]}
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As A ∈ FT is arbitrary, we have

E

[
exp

(
i

n∑
j=1

v⊤j X
T
tj

)
| FT

]
= E

[
exp

(
i

n∑
j=1

v⊤j X
T
tj

)]

We can deduce that exp(i
∑n

j=1 v
⊤
j X

T
tj
) is independent of FT .

(c) Immediately comes from RCLL of X.
Finally, we completed the proof.

6.5 Poisson Random Measure

Before we introduce poisson process, we first define jump process:

Definition 6.12. Let X = {Xt : t ≥ 0} be a RCLL Lévy process. Set:

∆Xt = Xt −Xt−, ∀ t ≥ 0

Then the process:
∆X = {∆Xt : t ≥ 0}

is called the jump process of X.

Now, the poisson process is certain type of Lévy in the sense that:

Theorem 6.24. Let N be a N-valued Lévy process. If N is increasing a.s. and
∆N ∈ {0, 1}. Then N is a poisson process.

Proof. The difficulty is to recover the distribution, now we define a set of stopping times:

T0 = 0, Tn = inf{t > Tn−1 : Nt −NTn−1 ̸= 0} = Tn−1 + inf{t > 0 : Nt+Tn−1 −NTn−1 ̸= 0}

This is the time that the process jumps, from construction, {Tn − Tn−1} are i.i.d. Then:

P(T1 > s+ t) = P(Ns = 0, Nt+s −Ns = 0) = P(Ns = 0)P(Nt+s −Ns = 0)

= P(Ns = 0)P(Nt = 0) = P(T1 > s)P(T1 > t)

, ∀ t, t ≥ 0, then similar to 6.8, P(T1 > t) = P(Nt = 0) = P(N1 = 0)t. Since we want the
probability finite, P(N1 = 0) ∈ (0, 1), then we denote as P(N1 = 0) = e−λ, λ > 0. Then:

P(T1 > t) = e−λt =⇒ P(Nt = n) = P(Tn+1 > t, Tn ≤ t) = P(Tn+1 > t)− P(Tn > t)

Lastly, using the gamma distribution to recover the distribution (do computation).

More interesting, if we fix at any t, the process will not jump:

Lemma 6.25. If X is a Lévy process, then fixed any t > 0, then ∆Xt = 0 a.s.

Proof. WLOG, assume X is RCLL, (or use its modification), then there exists:

{tn ∈ R+ : n ∈ N} with tn ↑ t s.t. Xtn

p.−−→ Xt

This gives us a subsequence Ytnk
that converges to Yt a.s. then Yt− = Yt a.s.
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Remark 6.17. 1. This doesn’t mean Lévy process don’t have jump. Since we fixed t.
If we want to study the jump: P(∃ t,∆Xt ̸= 0) ≈ ∪tP(∆Xt ̸= 0), the summation
of inifnite zeros may result in nontrivial.

2. It is possible that,
∑

0≤s≤t |∆Xs| =∞, a.s.

3. Moreover, for stopping time, ∆XT = 0 a.s is not guaranteed.

Now, based on jump process, we introduce random measure:

Definition 6.13. Let X be a RCLL Lévy process in Rd. ∀ t ≥ 0, ∀ A ∈ B(Rd/{0}),
we define:

N(t, A) = |{0 ≤ s ≤ t : ∆Xs(ω) ∈ A}|

Then EN(t, ·) is a Borel measure on B(Rd/{0}).

In particular, we call µ(·) = EN(1, ·) the intensity measure of X.

Remark 6.18. 1. The function of N is to study the jumps of X.

2. If A ∈ B(Rd/{0}) is bounded away from 0, i.e. 0 /∈ A, then ∀ t ≥ 0, N(t, A) <
+∞, a.s. The proof can be seen from textbook lemma 2.3.4.

Then, using this definition, we could extend our result:

Theorem 6.26. For any A ∈ B(Rd/{0}) that is bounded away from 0, then:

{N(t, A) : t ≥ 0}

is a poisson process with intensity µ(A).

Proof. Firstly, notice N(·, A) is increasing for every A, also ∆N(·, A) ∈ {0, 1}, follow
from 6.24, we only need to show {N(t, A) : t ≥ 0} is a Lévy process:

(1) Since N(0, A) = 1{X0∈A}, and A is bounded away from 0, then N(0, A) = 0.

(2) Note that N(t, A)−N(s, A) ≥ n iff:

∃ s < t1 < · · · < tn < t, s.t. ∆Xtj ∈ A, ∀ 1 ≤ j ≤ n

This implies N(t, A) − N(s, A) ∈ σ (Xu −Xv : s < v < u < t). Thus its indepen-
dence of increments follow from X. Similarly, we have stationary of increments.

(3) Lastly, by independence and stationary of increments:

P(N(t, A) = 0) = P

(
N

(
kt

n
,A

)
−N

(
(k − 1)t

n

)
= 0,∀ 1 ≤ k ≤ n

)
=

n∏
k=1

P

(
N

(
kt

n
,A

)
−N

(
(k − 1)t

n

)
= 0

)
= P

(
N

(
t

n
, A

)
= 0

)n
,∀ n ∈ N, ∀ t > 0

For any fixed t, set n→∞ to obtain limn→∞ P(N(t/n,A) = 0) = 0 or 1. However,
if ∀ t > 0,P(N(t, A) = 0) = 0, then N(t, A) > 0 a.s., which contradicts right-
continuity. Then we recover the stochastic continuity at 0.
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Therefore, we completed the proof, following 6.24.

Remark 6.19. If A1, · · · , Am are disjoint in B(Rd/{0}) and s1, · · · , sm are disjoint, then
N(s1, A1), · · · , N(sm, Am) are independent.

After all the preparation, we come to random measure:

Definition 6.14. Let (Ω,F ,P) be a probability space, S be a set. And A is an
algebra of subsets of S. A random measure, M, on (S,A) is a collection of r.v.s
{M(B) : B ∈ A} if:

(a) M(∅) = 0.

(b) M(A ∪B) = M(A) +M(B) if A ∩B = ∅.

Remark 6.20. A random measure is σ-addictivity if (b) is replaced by closed by countable
infinitely addictivity.

Since its related to r.v., then we also need independence:

Definition 6.15. A random measure M is independently scattered if for disjoint
family B1, · · · , Bn in A, the r.v.s M(B1), · · · ,M(Bn) are independent.

More special, we are concerning with poisson random measure:

Definition 6.16. Let S be a set, S be a σ-algebra of subsets of S, A ⊆ S be an
algebra. An independent scattered, σ-finite random measure M on (S,S) is called
poisson random measure if:

∀ B ∈ A,M(B) < +∞, and M(B) ∼ Poi(·)

Remark 6.21. λ(B) = EM(B) on B ∈ A can be extended to (S,S) to a σ-finite measure.

And then following theorem gives us why poisson random measure is important:

Theorem 6.27. Let S be a set, S be a σ-algebra, λ be a σ-finite measure on (S,S).
Then there exists a poisson random measure M on a probability space (Ω,F ,P) s.t:

∀ A ∈ S, λ(A) = EM(A)

In this case A = {A ∈ S : λ(A) < +∞}.

Proof. The proof is intentionally omitted.

Remark 6.22. 1. X be a RCLL Lévy process, S = Rd/{0}, S = B(S), A = algebra
generated by subsets of S that is bounded away from 0. Then ∀ t ≥ 0,Mt(A) =
N(t, A) is a poisson measure with λ(·) = tµ(·), (µ(A) = EN(1, A)).

2. Set M([s, t] × A) = Mt(A) −Ms(A),∀ s ≤ t, then M can be extended to a mea-
sure on (R+ × (Rd/{0}),B(R+ × (Rd/{0}))). (Also a σ-additivity poisson random
measure)

3. Note the following relation: λ(dt, dx) = dtµ(dx).
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4. Ñ(t, A) = N(t, A)− tµ(A) is called compensated poisson random measure.

6.6 Poisson Integral

After defining measure, the natural extension is to check integral:

Definition 6.17. Let X be a RCLL Lévy process, N be the associated poisson
random measure. For Borel measurable mapping f : Rd 7→ Rd, and A that is
bounded away from 0. Then we define, the poisson integral:∫

A

f(x)N(t, dx) =
∑
x∈A

f(x)N(t, {x})

, provided that the summation is finite a.s.

Then the difference between the normal integral is that N has poisson distribution.

Remark 6.23. Quick recall:

N(t, A) = |{0 ≤ s ≤ t : ∆Xs(ω) ∈ A}| =
∑
0≤s≤t

1{Xs(ω)∈A}

Therefore, we are surely curious about how to compute it?

Proposition 6.28. Let X be RCLL Lévy process, N be the associated poisson
random measure, A is bounded away from 0. We define a measure, ∀ B ∈ B(Rd):

µt,A(B) = µ
(
A ∩ f−1(B)

)
Therefore, we have following conclusions:

(a) ∀ t ≥ 0, if
∫
A
|f |µ(dx) <∞, then:∫

A

f(x)N(t, dx)

has compounded poisson distribution with characteristic function:

E exp

(
iu⊤

∫
A

f(x)N(t, dx)

)
= exp

(
t

∫
Rd

(eiu
⊤x − 1)µt,A(dx)

)

(b) ∀ t ≥ 0, if
∫
A
|f |µ(dx) <∞, then:

E

∫
A

f(x)N(t, dx) = t ·
∫
A

f(x)µ(dx)

(c) ∀ t ≥ 0, if
∫
A
|f |µ(dx) <∞,

∫
A
|f |2µ(dx) <∞, then:

Var

(∫
A

f(x)N(t, dx)

)
= t ·

∫
A

|f(x)|2µ(dx)
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Proof. Notice once (a) proved, (b)-(c) can be derived by taking derivative. Then we focus
on (a), consider case f =

∑n
j=1 cj1Aj

with disjoint Aj. Using independently scattered:

E exp

(
iu⊤

∫
A

f(x)N(t, dx)

)
= E exp

(
iu⊤

n∑
j=1

cjN(t, Aj)

)

=
n∏
j=1

E exp
(
iu⊤cjN(t, Aj)

)
=

n∏
j=1

exp
[
t
(
eiu

⊤cj − 1
)
µ(Aj)

]
= exp

[
t

∫
A

(
eiu

⊤f(x) − 1
)
µ(dx)

]
Then for f ∈ L1(A, µ|A) and f ≥ 0, one can approximate using simple functions. And
for general function, we split into f = f+ + f−, therefore we completed the proof.

The reason why we introduce these tools, is to better understand Lévy process:

Theorem 6.29. (Lévy-Itô Decomposition)
If X is a d-dimensional Lévy process, then there exists, b ∈ Rd, a d-dimensional
Brownian motion, B = {Bt : t ≥ 0} of some filtration {Ft : t ≥ 0}, a d×d matrix
Q, and an independent poisson random measure N on R+ × R+/{0}, s.t. ∀ t ≥ 0:

Xt = bt+QBt +

∫
|x|<1

xÑ(t, dx) +

∫
|x|>1

xN(t, dx)

Proof. Omitted since its complexity.

Remark 6.24. QBt is a Brownian motion with covariance matrix QQ⊤.

6.7 Stable Random Variable

Lastly, we introduce one more concept related to poisson distribution:

Definition 6.18. A r.v. X is stable if there exists a positive sequence {cn : n ∈ N}
and a sequence {dn : n ∈ N} such that, ∀ n ∈ N:

n∑
k=1

Xk
d.
= cnX + dn

, where X1, · · · , Xn are i.i.d. copies of X.

Moreover, X is said to be strictly stable if dn = 0,∀ n ∈ N.
Remark 6.25. 1. If exists, then cn = σn1/α for some α ∈ (0, 2], σ > 0, here α is called

the index of stability.

2. For normal r.v., we know: cn ≈ σ
√
n, i.e. (α = 2).

3. Any stable r.v. are always infinitely divisible.

Surprisingly, an infinitely divisible r.v. can always be characterised:
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Theorem 6.30. Let X be a real-valued stable r.v. with characteristic triplet
(a,A, ν) then one of followings holds:

(a) If α = 2, ν = 0, then X ∼ N (a,A).

(b) If α ∈ (0, 2), A = 0, then:

ν(dx) = c1x
−1−α1(0,+∞)(x)dx+ c2|x|−1−α1(−∞,0)(x)dx

, with c1, c2 ≥ 0, c1 + c2 > 0.

Proof. Omitted.

Remark 6.26. In second case, we have P(|X| > y) ∼ y−α as y → +∞. Moreover:

E|X|p =

{
< +∞ , p < α

= −∞ , p ≥ α

One can also add stable r.v. into Lévy process:

Definition 6.19. A stable Lévy process (sometimes called stable process) is a Lévy
process, X = {Xt : t ≥ 0} such that ∀ t ≥ 0, Xt is a stable r.v.

Remark 6.27. In some literature stable Lévy process is assumed to be rotationally
invariant. In this case, η(u) = −σα|u|α with α ∈ (0, 2] and σ > 0. Moreover, if X is

strictly stable, then X has self-similarity in the sense that Xat
d.
= a1/αXt,∀ t ≥ 0.

6.8 Homeworks

The followings are exercises for this section: Note that all vectors are column vectors.

Problem 6.1. LetX = X1+X2, whereX1 andX2 are independent r.v.s taking val-
ues in Rd with X1 ∼ N (a,Σ) and X2 ∼ Poisson(λ, µ). Prove that the characteristic
function of X is:

ϕX(u) = exp

(
iaTu− 1

2
uTΣu+

∫
Rd

λ
(
eiu

T y − 1
)
µ(dy)

)
,

where the integral is over Rd with respect to the measure µ.

Problem 6.2. Prove that every Lévy measure is σ-finite.

Problem 6.3. Let X be a Lévy process with the characteristic triple (a,A, ν).
Prove that:

1. the measure ν̃ given by ν̃(A) = ν(−A) for all A ∈ B(Rd) is also a Lévy
measure;

2. −X is also a Lévy process with the characteristic triple (−a,A, ν̃).
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Problem 6.4. For the standard d2-dimensional Brownian motion B = {Bt : t ≥ 0},
determine the Lévy symbol and the characteristic triple of X = {at+PBt : t ≥ 0},
where a ∈ Rd1 and P is a d1 × d2 matrix.

Problem 6.5. Prove the following statements:

1. A Poisson process is always a subordinator.

2. A compound Poisson process is a subordinator if Zn ≥ 0 almost surely for all
n ∈ N.

Problem 6.6. If X is a compound Poisson process, prove that for any t > 0,∑
0≤s≤t

|∆Xs| <∞, a.s.
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7 Brownian Sheets

Having journeyed from discrete to continuous time, and explored Markov and Lévy pro-
cesses, we now extend our gaze beyond one-dimensional time. The Brownian sheet is
the natural multi-dimensional analogue of Brownian motion, a Gaussian random field
indexed by Rd

+ whose covariance factorizes as
∏

min(sj, tj). This chapter navigates the
richer landscape of random fields, where linear order gives way to partial order, and famil-
iar tools like filtrations and martingales adapt into new, multi-parameter forms. We will
see how the Brownian sheet emerges as both a strong martingale and an integrated white
noise, offering a bridge between the one-parameter theory and the spatial randomness
that underlies fields like stochastic PDEs and spatial statistics.

7.1 Motivation

Recall that all we studied before is stochastic process, X = {Xt : t ≥ 0}, so naturally
the index, or time, should be nonnegative. However, what if we want to extend this into
more general spaces? Say Rd? Is there any differences? And also what kind of problems
we have when defining this ”process”. This is actually called random field. Let’s start
with the easiest stochastic process, we have studied previously, the Brownian Motion:

Definition 7.1. Let {Ft : t ≥ 0} be a filtration on (Ω,F ,P). Then the continous
stochastic process B = {Bt : t ≥ 0} adapted to {Ft : t ≥ 0} is called d−dimensional
Brownian Motion if:

(1) B0 = 0d, a.s.

(2) ∀ 0 ≤ s ≤ t,Bt − Bs ∼ N (0d, (t− s)Id) and independent of Fs

But in this definition, there is a hugh problem if we extend into higher dimension: the
comparision, how do we compare two time vectors in Rd? Then check another candidates:

Definition 7.2. A continous process B = {Bt : t ≥ 0} adapted to filtration {Ft :
t ≥ 0} is a standard brownian motion if:

(a) B is a zero-mean/centered Gaussian process.

(b) EBtBs = min{s, t}. ∀ t, s ≥ 0

This only asks us to check the distribution information, and also the covariance, which
are eaiser to be done in higher dimensions.

7.2 Formalisation

Then alongside above reasoning, we first give the definition of random field.

Definition 7.3. A collection, X = {Xt : t ∈ Rd}, of r.v.s is called a random field.

Remark 7.1. In case of d = 1, random field becomes stochastic process.
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Recall how we studied brownian motion, and also remember our obstacle, order:

Filtration 7−→ Martingale 7−→ Brownian Motion

And besides, we are going to concentrate into R2
+ since extension from this to higher/full

dimension is simple, but generalise from R+ is the really difficulty.

Remark 7.2. We are going to use following notation, called partial order, ⪯:

(s, t) ⪯ (s′, t′)
def.⇐==⇒ s ≤ s′, t ≤ t′

(s, t) ≺ (s′, t′)
def.⇐==⇒ s < s′, t < t′

Therefore, we first establish the filtration:

Definition 7.4. Let (Ω,F ,P) be a probability space, and {Fz : z ∈ R2
+} be a

family of sub-σ-algebra of F and satisfying:

(a) If z ⪯ z′, then Fz ⊆ Fz′ .

(b) F0 contains all null sets of F .

(c) ∀ z ∈ R2
+, Fz =

⋂
z⪯z′ Fz′ .

(d) ∀ z = (s, t) ∈ R2
+, for σ-algebras:

F (1)
z = Fs∞ = σ (Fsv : v ∈ R+) ,F (2)

z = F∞t = σ (Fut : u ∈ R+)

, then F (1)
z ⊥ F (2)

z | Fz.

(d’) An alternative of (d) is: ∀ bounded r.v. X, ∀ z ∈ R2
+:

E (X | Fz) = E
[
E
(
X | F (1)

z

)
| F (2)

z

]
Be aware that for stochastic prcess, the 7.4’s(c) be can derived from 7.4’(a), which is not
true for random field. And following remark reveal the relation of this three σ-algebras:

Remark 7.3. For A ∈ F (1)
z ∩ F (2)

z , choose X = 1A, then from 7.4’(d’):

E (1A | Fz) = E
[
E
(
1A | F (1)

z

)
| F (2)

z

]
= E

(
1A | F (2)

z

)
= 1A

Then it means: A ∈ F (1)
z ∩ F (2)

z =⇒ 1A ∈ Fz =⇒ A ∈ Fz =⇒ F (1)
z ∩ F (2)

z ⊆ Fz.
For another inclusion, it can be seen from 7.4’s (d), then Fz = F (1)

z ∩ F (2)
z .

Until now, a natural question is that is there ”filtration” satisfied those conditions? Since
proving them rigourously is too demanding, we show its existence by providing example:

Example 7.1. On (Ω,F ,P), considering two independent filtration: {F (1)
s : s ∈

R+}, {F (2)
t : t ∈ R+}, then ∀ z = (s, t) ∈ R2

+:

Fz = σ
(
F (1)
s ∪ F

(2)
t ∪ {A : P(A) = 0}

)
, then this clearly satisfies 7.4’s (a)-(d).
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Here we give a more concrete example,

Example 7.2. Let {X(A) : A is rectangle in R2
+} be a collection of r.v.s satifying:

X(A1), · · · , X(An) are independent if A1, · · · , An are mutually disjoint, then set:

Fz = σ (σ (X(A) : A ⪯ z) ∪ {A : P(A) = 0})

, which also satisfies 7.4’s (a)-(d).

Confirmed with the filtration, we could further define the adaption:

Definition 7.5. A random field of X = {Xt : t ∈ R2
+} is adapted with respect to

{Fz : z ∈ R2
+} if ∀ z ∈ R2

+, Xz ∈ Fz.

Moreover, measurable and progressively measurable process can also be formulated:

Definition 7.6. A random field of X = {Xt : t ∈ R2
+}, adapted with respect to

{Fz : z ∈ R2
+}, is called measurable if the function:

(z, w) 7→ Xz(ω)

, is B(R2
+)⊗F measurable.

Similarly for progressively measurable, since we won’t use it further then leave for reader
to verify. Next, we are ready to ”try” to define the martingale:

Definition 7.7. A random field, M = {Mz : z ∈ R2
+} is a martingale relative to

{Fz : z ∈ R2
+} if followings hold:

(a) M is adapted with respect to {Fz : z ∈ R2
+}.

(b) ∀ z ∈ R2
+, M is integrable, i.e. E|Mz| < +∞.

(c) ∀ z ⪯ z′,E (Mz′ | Fz) =Mz.

To proceed, we use following convention, ∀ z = (s, t) ⪯ (s′, t′) = z′ ∈ [0,+∞)2, denote:

(z, z′] := (s, s′]× (t, t′]

Then getting this tool, we provide two remarks without narratively stating and proving:

Remark 7.4. 1. The increment of a random field X over rectangle (z, z′] is:

X(z,z′] = Xs′,t′ −Xs′,t −Xs,t′ +Xs,t

2. A random field, X, defined as above, induces a random signed measure.

All of above seems smooth, but indeed, they are not ”real” martingale that we want, to
modify some properties, we are more interested into weak/strong martingale:
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Definition 7.8. Let X = {Xz : z ∈ R2
+} be a random field that is integrable:

(a) X is a weak martingale relative to {Fz : z ∈ R2
+} if:

(1) X is adapted with respect to {Fz : z ∈ R2
+}.

(2) ∀ z ⪯ z′, E
(
X(z,z′] | Fz

)
= 0.

(b) X is a martingale relative to {Fz : z ∈ R2
+} if:

(1) X is adapted with respect to {Fz : z ∈ R2
+}.

(2) ∀ z ⪯ z′, E (Xz′ −Xz | Fz) = 0.

(c) X is a strong martingale relative to {Fz : z ∈ R2
+} if:

(1) X is adapted with respect to {Fz : z ∈ R2
+}.

(2) ∀ z ⪯ z′, E
[
X(z,z′] | σ

(
F (1)
z ,F (2)

z

)]
= 0.

(3) Mz = 0 if z = (s, 0) or (0, t).

Beside, we can also introduce ”martingale” with only one filtration:

Definition 7.9. Let X = {Xz : z ∈ R2
+} be a random field s.t. Mz is integrable

∀ z ∈ R2
+. For i = 1, 2, M is an i-martingale relative to

{
F iz : z ∈ R2

+

}
if:

(a) M is adapted to
{
F iz : z ∈ R2

+

}
.

(b) ∀ z ⪯ z′,E
[
X(z,z′] | F iz

]
= 0.

Then a natural question is to ask the relations between these ”martingales”:

Proposition 7.1. (a) A strong martingale is a martingale.

(b) A martingale is both a 1- and 2-martingale.

(c) A random field, that is both 1- and 2- martingale, is a weak martingale.

Proof. Let X = {Xz : z ∈ R2
+} be a random field, then we proceed the proof:

(a) If X is a strong martingale w.r.t {Fz : z ∈ R2
+}, then X ∈ Fz,∀ z ∈ R2

+, notice:

Xs′,t′ −Xs,t = (Xs′,t′ −Xs,t′ −Xs′,t +Xs,t) + (Xs′,t −Xs,t) + (Xs,t′ −Xs,t)

= X(z,z′] +X((s,0),(s′,t)] +X((0,t),(s,t′)]

Writing all of them in difference, we could use the proerties of strong martingale:

(1) For X(z,z′], we simply use the property, note that Fz ⊆ σ
(
F (1)
z ,F (2)

z

)
:

E
[
X(z,z′] | Fz

]
= E

[
E
[
X(z,z′] | σ

(
F (1)
z ,F (2)

z

)]
| Fz

]
= E [0 | Fz] = 0

(2) For X((s,0),(s′,t)], note that Fs,t ⊆ F (1)
s,0 ⊆ σ

(
F (1)
z ,F (2)

z

)
:

E
[
X((s,0),(s′,t)] | Fz

]
= E

[
E
[
X((s,0),(s′,t)] | σ

(
F (1)
s,0 ,F

(2)
s,0

)]
| Fz

]
= 0
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(3) Similar result for X((0,t),(s,t′)].

Then we finished proof of (a), since:

E [Xz′ −Xz | Fz] = E
[
X(z,z′] +X((s,0),(s′,t)] +X((0,t),(s,t′)] | Fz

]
= 0 + 0 + 0 = 0

(b) Let X be a martingale w.r.t {Fz : z ∈ R2
+}, then ∀ z ∈ R2

+, Xz ∈ Fz ⊆ F (1)
z ,F (2)

z :

E
[
X(z,z′] | F (1)

s,t

]
= E

[
Xs′,t′ −Xs′,t | F (1)

s,t

]
− E

[
Xs,t′ −Xs,t | F (1)

s,t

]
= E

[
E
[
Xs′,t′ −Xs,t′ | F (2)

s,t′

]
| F (1)

s,t′

]
− E

[
E
[
Xs′,t −Xs,t | F (2)

s,t

]
| F (1)

s,t

]
= E [Xs′,t′ −Xs,t′ | Fs,t′ ]− E [Xs′,t −Xs,t | Fs,t] = 0− 0 = 0

This follows X is 1-martingale, then similar to 2-martingale we finish proof of (b).

(c) Let X is both 1- and 2-martingale, then for adaptivity:

∀ z ∈ R2
+,
Xz ∈ F (1)

z =⇒ σ(Xz) ⊆ F (1)
z

Xz ∈ F (2)
z =⇒ σ(Xz) ⊆ F (2)

z

=⇒ σ(Xz) ⊆ F (1)
z

⋂
F (2)
z = Fz

, so Xz ∈ Fz, and integrability follows from construction, lastly:

E
[
X(z,z′] | Fz

]
= E

[
E
[
X(z,z′] | F (1)

z

]
| Fz

]
= E [0 | Fz] = 0

Therefore, we completed the proof.

Remark 7.5. Generally: 1- and 2-martingale ⇏ Martingale ⇏ Strong Martingale.

After all preparation, we could add distribution into random field, now we introduce:

Definition 7.10. Let X = {Xt : t ∈ Rd
+} be a random field. If ∀ n ∈ N, ∀ disjoint,

t(1), · · · , t(n) ∈ Rd
+, the joint distribution of Xt(1) , · · · , Xt(n) is Gaussian, then X is

called a Gaussian Random Field.

Recall 5.3, for BM = adapted + centered gaussian + EBtBs = min{s, t}, then:

Definition 7.11. A centered Gaussian random field, B = {Bt : t ∈ Rd
+} with

convariance function, ∀ s = (s1, · · · , sd), t = (t1, · · · , td) ∈ Rd
+:

EBtBs =
d∏
j=1

min{sj, tj}

, is called a Brownian sheet (d, 1).

Remark 7.6. Notice that if B and B′ are two independent Brownian motion, and since
EBtBs = min{s, t} and EB′

t′B
′
s′ = min{s′, t′}, then define Xt = BtB

′
t is not a Brownian

sheet (since it is not Gaussian).

Also recall 5.1, BM = adapted + independence increment + Bt − Bs ∼ N (0, t− s):
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Definition 7.12. Let (S,S, ν) is a σ-finite measure space. A random set function
W on {A ∈ S : ν(A) < +∞}, satisfying:

(a) W (A) ∼ N (0, ν(A)).

(b) If A ∩B = ∅, then W (A) ⊥ W (B) and W (A ∪B) = W (A) +W (B).

, is called a white noise based on ν.

Remark 7.7. If W is a white noise with ν = Lebs, set Xt = W ((0, t1]× · · · × (0, td]), here
t = (t1, · · · , td) ∈ Rd

+, then {Xt : t ∈ Rd
+} is a Brownian sheet w.r.t

{
FXz : z ∈ Rd

+

}
.

A natural question is to ask can we recover brownian motion through brownian sheet:

Proposition 7.2. Let B = {Bt : t ∈ Rd
+} be a Brownian sheet w.r.t {Fz : z ∈ Rd

+}:

(a) Bt = 0 a.s. if t1 · · · td = 0.

(b) Set Xt1 = (t2 · · · td)−1/2 Bt for t = (t1, · · · , td) ∈ Rd
+, if we fix t2, · · · , td, then

X = {Xt : t1 ∈ R+} is a standard Brownian motion w.r.t {Ft : t1 ∈ R+}.

Proof. The proof is simple, since we just need to check conditions

(a) 0 ≤ EB2
t =

∏d
j=1 tj = 0 =⇒ B2

t = 0 a.s.

(b) EXt1Xt′1
= (t2 · · · td)−1 EBt1,··· ,tdBt′1,··· ,td = min{t1, t′1}

Then we finished the proof easily.

Besides, we want to introduce a sample path property of Brownian sheet:

Proposition 7.3. A Brownian sheet has a modification, which has continuous
sample paths.

Proof. The key tool is Kolmogorov Continuity Theorem for Random field, and the idea
of the proof is to find:

E|Bt −Bs|α ≤ C · |t− s|?

Then recover the modification so that continuous sample paths.

Lastly, we present the theorem connect Brownian sheet to martingale:

Theorem 7.4. A Brownian sheet B is a strong martingale w.r.t.
{
FB
z : z ∈ Rd

+

}
,

where FB
z = σ (σ (Bz′ : z

′ ≺ z)
⋃
Fnull), here Fnull = {A ∈ F : P(A) = 0}.

Proof. We only present the idea of the proof:

(1) For disjoint rectangle A = (z, z′], Ã = (z̃, z̃′], check EBABÃ = 0 =⇒ BA ⊥ BÃ

(2) Bt = 0, t = (t1, t2) with t1 = t2 = 0.

(3) Check E
[
B(z,z′] | σ

(
F (1)
z ,F (2)

z

)]
= 0, ∀ z ⪯ z′.

And readers are encouraged to complete the proof.

Remark 7.8. Lévy process can also be extended to random field but too complicated.
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