Towards Understanding and Optimising an ePIE
for Electron Microscopy

LU Shan

Supervisor: Prof. ZHU Ye,
Dr. CHEN Changsheng

Midterm Interview Presentation

LU Shan

ds Understanding and Optimising an ePIE for Electron Micrc



round and Motivation

Outline

@ Background and Motivation

LU Shan




und and Motivation

TEM vs. STEM Image Formation (1)

Parallel lllumination

TEM (Transmission EM):

@ Nearly parallel electron beam
floods the sample.

Specimen

Objective Lens

Diffracted Beams @ The objective lens after the

4 specimen focuses the transmitted
electrons to form a magnified
image on a camera (detector).

CCD detector

H RTE M (Parallel collection)
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ind and Motivation

TEM vs. STEM Image Formation (2)

Objective Lens

Electron Probe STEM (Scanning TEM):

" ligh Angle o A finely focused electron probe
pcHetering (from condenser lenses) scans
across the sample.

Specimen

@ At each probe position, scattered
electrons are collected by detectors
(annular for dark-field), building up
the image pixel by pixel.

Spectrometer

(Serial collection) STE M
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ind and Motivation

TEM / STEM as a Forward Imaging Problem

In electron microscopy, the sample is described by a complex
transmission function

O(r) = explioc V(r)],

where V/(r) is the projected electrostatic potential.

The exit wave after the specimen is

Yexit(r) = P(r)O(r),

with P(r) denoting the incident probe or illumination.
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ind and Motivation

What Is Actually Measured

In conventional TEM / STEM, the detector records only intensity:

/(k) - |-7:{¢exit(r)}|2

@ Phase information of tey; is lost.

@ Multiple distinct wavefunctions can produce the same
intensity.

@ The inverse problem becomes ill-posed.
Key limitation:

— 2
Y(r) . |3b(r)]
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oject Introduction

From Phase Loss to Phase Retrieval

Introduce measurement diversity to compensate for lost phase
information.

Single measurement: /(k) = ‘]—'{w(r)}‘z = ill-posed
Multiple measurements: /;(k) = |]—"{7,Z;j(r)}|2, ji=1...,N

@ Each measurement alone is insufficient.

@ Redundancy across measurements provides additional constraints.

Question: how should these measurements be generated?
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’roject Introduction

Electron Ptychography: Forward Model

g
- Probe at position R; : Pj(r) = P(r — R))
Exit wave:y);(r) = P(r — R;) O(r)
© a40 . . 2
55 A Measured intensity:/;(k) = ]F{wj(r)H

@ Unknowns: object O(r), probe P(r).
ADF

detectop @ Overlap between adjacent probes introduces
strong constraints.
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Ptychographic Iterative Engine (PIE) (1)

Ptychographic measurement

A focused probe scans the specimen with overlapping illumination.

Assume Known Probe function!
@ Make an initial guess:Ogess(R;)
@ Known Probe: P(r —R;)
@ Guess Exit Wavefuntion:

Vguess(Rj) = Oguess(R;j) x P(r — R;)

@ Note that we have the experimental

measured result: \/T(kj) = |Wexp(kj)|

=

X
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ect Introduction

Ptychographic Iterative Engine (PIE) (2)

Iterative loop (conceptual):

fikss (Ry) = Ofikes(Ry) x P(r — Ry)
Wikes() = F {6{Thsl(Ry) b = ALlkss(5) exp (i6guess(k;))
W o) = Wy (k) exp (iguess (k)
wﬁgzated(Rj) =7 {wﬁr:))dated(kj)}
Ofidss) (Ry) = OLikss(Ry) + Paorm X Piiter ¥ A%((R;)

Stop until convergence!

° Ad} (R ) = updated( ) wguess( )
@ Phorm, Priiter are carefully chosen " normalization” related to probe function.
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Limitations of PIE

@ Original PIE assumes a known probe.
@ Sensitive to experimental imperfections.

@ Convergence may depend strongly on initialization.

Can we recover both the object and the probe simultaneously?
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oject Introduction

Extended PIE (ePIE)

Treat both object and probe as unknowns and update them jointly.

Coupled updates (schematic):

O(n+1 ( ) — O " ( )+ Pnorm X Pfilter X Alb(")(R)

guess guess
Péﬂ:si)(R ) — Pglr}ess( J) + Onorm X Ofllter X Ai/’ ( )

@ Onorm, Ofilter are carefully chosen "normalization” related to object function.
@ Probe redundancy stabilizes reconstruction.

@ More robust for experimental data.
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ct Introduction
o

Objective of this Project

Inspired by above reasoning, hopefully, we could complete
followings:

@ Understanding the latest ePIE algorithm,
@ Trying to implement in our own group data (Make it works),

© Optimising some functions or customizing some features to
better suit our data.
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ilts Obtained

Outline

© Results Obtained
@ Physics & Pipeline of PtyRAD
@ PtyRAD Reconstruction on SrTiO3
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Results Obtained

Current Progress

Since last semester, | was in exchange programme, then | mainly
did some basic preparation works:

Getting familiar with ptychography's origins (from X-ray),
Studying the PIE, and its variants, like ePIE, rPIE, mPIE etc,

Delve into Ptychographic Reconstruction Framework with
Automatic Differentiation (PtyRAD),

Implemented the PtyRAD with our sample data on SrTiOs3.
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Results Obtained
[e]e] }

Why PtyRAD?

o Latest ePIE-based approach: PtyRAD is a new iterative
ptychography algorithm in the extended PIE family, designed
to handle advanced physical models with high efficiency.

e Optimization flexibility: Traditional algorithms required
manual update derivations for each new parameter. PtyRAD
leverages automatic differentiation (AD) to seamlessly
optimize many parameters (probe positions, sample tilt, slice
spacing, mixed states) via gradient descent.

e Computational efficiency: Implemented in PyTorch,
PtyRAD uses GPU-accelerated tensor operations and AD to
achieve up to ~17x faster reconstructions than existing
packages. It provides an open-source, modern replacement for
slower, inflexible or proprietary ptychography codes.
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Physics & Pipeline of PtyRAD

Multislice Ptychography Model

Incident electron Incident electron

VIVLLLLL R R R T

(Single scattering)

| Vacuum

—

approximate Many slices

PIVLLLLL LUV

Transmitted electron Transmitted electron

@ The object O(r) is divided into N thin slices , {O;(r)}Y;, along the
beam direction. At position rj, probe P(r;) propagates through
slices sequentially, capturing multiple scattering.

@ And last layers’ exit wave is treated as next layers’ incoming wave.
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Results Obtained

Physics & Pipeline of PtyRAD

Mixed-State Probe & Object Modes

@ PtyRAD uses a mixed-state formalism: represent probe as M
incoherent modes P("™)(r) and object as N modes O(")(r).
Each mode pair produces a separate exit wave w(m’")(rj).

@ The diffraction intensity at detector for position j is an
incoherent sum over all mode combinations:

M N 5
1) = 03 |Flet™)m)}

m=1 n=1

The mixed-state model allows retrieval of multiple probe
modes (partial coherence or mode instabilities) and multiple
object modes (e.g. multi-layer specimens).
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Results Obtained

Physics & Pipeline of PtyRAD

Schematic of the PtyRAD framework

AD-optimizable tensors

P ~ N
’ .
| Mixed Mixed \ Exit waves
| Probes  shift  Multislice  Obiects !
1 operator propagator ! n
| (probe position) _ i, thickness) n :
m
1 = S _M_’ I'] :4 'Ill

[ [l
! PEEE
. b, 0L oL al I ’“ oo !
e 3 9z 0€CVNDNPN Y, € Oy
[ AD gradients 9P ! oL
Y,
N - aP 20 P / Vs
- Optimizers
Physical Update
constraints
Hyperparameter
tuning
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ts Obtained

Physics & Pipeline of PtyRAD

Resulting Exit Wave by multislice algorithm

Using the standard multislice algorithm, for P(™_ O(" spliced into
N,, where z is the thickness, at r;:

PO (e5) = 0 (1) -+ FH{ Myaz - F {00 (1) x P ()}

@ 0; is the local tilt at r;.
@ Az is the splice thickness.
) ng,Az is splice propagator related to 6;, Az.

Then after calculating each one, the model intensity at k; (r;):

M N 5
) = >0 3 [FLu™ ()}

m=1 n=1
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sults Obtained

Physics & Pipeline of PtyRAD

Loss Function and Optimization (1)

The total Loss Function is decomposed into four parts:

Liotal = w1LGaussian + W2 LpPoisson + wW3LPACBED + W4£sparse

With user-controlled weights: {w;}?_;, and loss functions defined
below, where D, B, R refer to detector, batch, spatial dimension:

e Gaussian Loss: (with default p = 0.5)

2
\/<(lnp10del - Irﬁeas) >D,B

<I£eas>D,B

EGa ussian —
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Its Obtained

Physics & Pipeline of PtyRAD

Loss Function and Optimizatio (2)

o Poisson Loss: (with default p =1, ¢ = 1079)

</rﬁeas Iog (lnﬁodel + 8) - /rﬁode|>D,B

</r,r)1eas>’D,B

LPoisson = -

o Position-Averaged Convergent Beam Electron
Diffraction: (with default p = 1)

(o — (e,

L =
PACBED (Bors)p s

e Sparse: (with default p=1)

1
Loparse = {|0plP) 15
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Results Obtained

Physics & Pipeline of PtyRAD

Updating Object & Probe

In PtyRAD, we minimize a total loss to update key variables:
Object Transmission O(")(r;),

Probe Wavefunction P(™)(r;),

Slice Spacing Az,

Local Tilt §; (Unique improvement compared with
pyADSTEM).

All updates are performed via automatic differentiation (AD)
using PyTorch.
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ilts Obtained

Physics & Pipeline of PtyRAD

Hyperparameters Tuning

o Automatic parameter selection by Bayesian Optimization:
Convergence in iterative optimization problems is highly
sensitive to algorithmic parameters such as batch sizes,
learning rates, and other configurational settings which are
generally referred to as hyperparameters.
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Results Obtained

PtyRAD Reconstruction on SrTiO3

Experimental Setup

We are considering SrTiOs3:
e N = 40000 = 200 x 200,
Probe: 300 KeV electron at 28.9 mRad,

°
@ Total lteration: 100,
°

For loss function we only consider:
© Gaussian (w; =1,p=0.5),
@ sparse loss (wg =0.1,p=1).

Note here we used centered mode, which focus
on [50,150] x [50, 150].
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otained

PtyRAD Reconstruction on SrTiO3

Forward Consistency(1)

Forward pass at iter 100

probe itensiy 8420075 Object phase (osum, zsum) (620075 odel D705 (620075 Dato P05 16320075
Probe intensity idx20125 5 Model DP~0.5 idx20125
s 2 ' g ¥
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Results Obtained

PtyRAD Reconstruction on SrTiO3

Forward Consistency (2)

What we could improve:

o Add a residual map: |\/kim — v/kneas| (iter 0/50/100/final).

@ Refine detector center/background; enable PACBED loss if
needed.

@ Continue iterations and then switch INDICES_MODE: center
— full.
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ults Obtained

PtyRAD Reconstruction on SrTiO3

Convergence (Loss vs. Iterations)

0.350

0.325

0.300

Loss value
o o
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0.225

0.200
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Loss value: 0.17615 at iter 100

Last 10 iterations
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What to improve next:

@ Learning-rate
schedule (warm-up
— decay) to reduce
late-stage plateau.

@ Stage-wise
optimization: freeze
position /probe early,
then unfreeze.




ults Obtained

PtyRAD Reconstruction on SrTiO3

Mixed-State Probe Modes (Partial Coherence)

Init pmode 0: 94.0%

Opt pmode 0: 52.5%

LU Shan

Init pmode 1: 2.0%

Opt pmode 1: 21.7%

Init pmode 2: 2.0%
mo.

Opt pmode 2: 13.4%

Probe modes amplitude in real space at iter 100

Init pmode 3: 2.0%

Opt pmode 3: 12.4%

08
06
04
02

What to improve next:

@ Check probe—object
leakage: add
stronger constraints
/ orthogonalization
frequency.

@ Try fewer/more
modes as an
ablation, then
increase if needed.

Understandi
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Results Obtained

PtyRAD Reconstruction on SrTiO3

Scan Position Refinement (Drift/Distortion Correction)

Scan positions at iter 100

What to improve next:

@ Report mean
displacement
statistics as a
quantitative figure.

o After center
convergence, re-run
full field for final
refined positions.
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Results Obtained

PtyRAD Reconstruction on SrTiO3

Reconstructed SrTiO3 Object (Multislice z-sum)

What to improve next:

@ Increase iterations / add
final L-BFGS refinement
after Adam.

o Validate with a baseline:
virtual ADF image from raw
4D data (side-by-side).

Sliced into 32 layers, each
thinkness 10 A
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Understand 1d Optimising an ePIE for Electron M



Future Plan

Outline

@ Future Plan

LU Shan

1 ePIE for Elec



Make it Works — Make it Fast & Robust

e Phase A: Make it works (integration): reproduce
PtyRAD-style AD reconstruction on our group data with a
clean, modular pipeline.

e Phase B: Optimize & customize (engineering): profile
bottlenecks, tune hyperparameters, and add features that
better match our experimental conditions.

LU Shan
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Future Plan

Timeline and Expected Outcomes (1)

(1) January — Understand & Replicate:
o Read PtyRAD structure = code map + parameter schema.
o Reproduce official demo(s) and confirm numerical sanity.
e Forward DP + loss curve reproducible on reference dataset.
(2) February — Test on Own Data:
o Run on a controlled subset (center / smaller batches).
e Produce standard figure set: forward (with residual), loss,

probe modes, scan positions, z-sum.
e End-to-end pipeline works on group dataset with stable

convergence.

LU Shan
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Future

Timeline and Expected Outcomes (2)

(3) March — Integrate & Adapt:
o Integrate modules into group codebase (clean interfaces).
o Run ablations: slice/mode/loss/INDICES mode; document
stable defaults.
e Selected physics options justified for our experiments.
(4) April — Optimize & Finalize:
o Profiling-driven speedups; finalize runtime benchmark.
e Final reconstructions on target dataset; prepare report-ready

tables/figures.
e Deliverables: updated group code + reproducible scripts +

final FYP report.
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Q&A

Thank you for your attention!

(Questions and discussion)

LU Shan

Understanding Optimising an ePIE for Electron



	Background and Motivation
	Project Introduction
	Results Obtained
	Physics & Pipeline of PtyRAD
	PtyRAD Reconstruction on SrTiO3

	Future Plan

